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Abstract	

Grid	cells	in	freely	behaving	mammals	are	defined	by	the	strikingly	regular	periodic	spatial	distribution	of	their	
firing.	The	standard	method	of	identification	calculates	the	“Gridness”	of	the	spatial	firing	pattern,	with	
significance	being	defined	relative	to	the	95th	percentile	of	a	null	distribution	of	the	Gridness	values	found	after	
randomly	permuting	spike	times	relative	to	behaviour.	We	determined	the	false-positive	rate	by	applying	the	
method	to	simulated	firing	with	irregular	spatially	inhomogeneity	(i.e.	randomly	distributed	Gaussian	patches).	
We	found	surprisingly	high	false	positive	rates	(potentially	approaching	20%),	which	were	strongly	dependent	
on	the	type	of	Gridness	measure	used	and	the	number	of	spatial	fields	in	the	synthetic	data.	This	likely	reflects	
the	spatial	homogeneity	of	the	distributions	of	spikes	after	shuffling	compared	to	the	inhomogeneous	
synthetic	data.	However,	false	positive	rates	were	reduced	(generally	below	8%),	and	less	dependent	on	other	
factors,	when	an	alternative	spatial	field	shuffling	method	was	used	to	generate	the	null	Gridness	distribution.	
For	comparison,	we	analysed	single	unit	recordings	made	using	tetrodes	implanted	into	rat	medial	entorhinal	
cortex	for	the	purpose	of	finding	grid	cells.	We	found	24%	of	active	neurons	were	classified	as	grid	cells	via	
spike	shuffling	and	22%	via	field	shuffling.	These	results,	and	the	potentially	high	false-positive	rate	when	
classifying	cells	with	patchy	but	irregular	firing	as	grid	cells,	indicate	that	the	proportion	of	cells	with	regular	
grid-like	firing	patterns	can	be	over-estimated	by	standard	methods.							
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Introduction	

Grid	cells	have	been	identified	in	the	medial	Entorhinal	Cortex	(mEC)	of	a	variety	of	mammalian	species1–5.	
Recorded	in	behaving	animals,	they	show	a	spatial	distribution	of	firing	as	a	function	of	location	that	is	
characterized	by	a	remarkable	regular	periodic	structure.	Here	we	examine	the	standard	methods	for	
identifying	the	spatially	regular	firing	patterns	of	grid	cells,	focussing	on	the	false	positive	rate	when	applied	to	
neural	firing	that	may	include	irregular	spatial	inhomogeneity,	as	is	often	seen	in	recording	from	animals	
whose	behaviour	is	inhomogeneously	distributed	in	space.	

Grid	cells	were	discovered	in	rat	mEC	4,6	and,	in	the	open	field,	fire	whenever	the	animal	enters	an	array	of	
locations	arranged	across	the	environment	at	the	vertices	of	a	regular	triangular	grid.	The	standard	method	of	
identifying	grid	cells	is	based	on	a	“Gridness”	measure	which	quantifies	the	6-fold	rotational	symmetry	in	the	
firing	pattern	7.	The	spatial	autocorrelogram	(SAC)	is	calculated	from	the	firing	rate	map,	the	annulus	
containing	the	six	peaks	nearest	the	origin	is	found	and	the	firing	rates	in	the	annulus	are	correlated	with	those	
in	rotated	versions	of	the	annulus.	Grid	cells	should	have	a	greater	correlation	for	60o	and	120o	rotations	than	
for	30o	90o	and	150o	rotations.	The	“standard	Gridness”	measure	is	thus	defined	as	the	minimal	(60o,	120o)	
correlation	minus	the	maximum	(30o,	90o,	150o)	correlation	7.	Subsequent	modifications	include	“expanding	
Gridness”	in	which	the	radius	of	the	annulus	is	varied	and	the	maximum	Gridness	score	is	used	8	,	“elliptical	
Gridness”	in	which	the	annulus	is	allowed	to	be	elliptical	9	and	“expanding	elliptical	Gridness”	3,10.	The	
significance	of	a	neuron’s	Gridness	is	judged	relative	to	the	distribution	of	Gridness	scores	in	a	“spike-shuffled”	
population	of	firing	rate	maps	used	to	simulate	the	null	hypothesis	of	no	grid	cells.	By	rotating	the	times	of	the	
spikes	relative	to	the	locations	8,11	populations	of	firing	rate	maps	are	formed	in	which	there	is	no	spatial	
structure	while	maintaining	temporal	structure	(Figure	1).	

We	were	concerned	that	these	methods	might	overestimate	“Gridness”,	because	“spike-shuffled”	data	tends	
to	be	more	uniformly	distributed	in	space	than	is	typical	of	data	from	freely	behaving	animals,	in	which	the	
distributions	of	behaviour	and	sensory	stimuli	create	inhomogeneity.	One	potential	solution	is	to	perform	
“field	shuffling”,	that	is,	allow	inhomogeneity	by	having	local	clusters	of	firing,	but	randomise	their	locations	
relative	to	each	other	12.	To	investigate	these	issues,	we	analysed	artificial	datasets	constructed	to	contain	
irregular	spatial	inhomogeneity	-	randomly	distributed	Gaussian	patches	of	firing	-	so	as	to	be	able	to	estimate	
the	false-positive	rate	for	detecting	grid	cells	in	these	circumstances.	We	then	analysed	datasets	recorded	
from	mEC	in	foraging	rats	13,14	to	estimate	the	actual	proportion	of	neurons	with	regular	grid-like	firing	
patterns	that	are	detected	by	the	various	methods.		
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Materials	and	Methods	

Neural	data	

Animals	and	surgery	

Seven	male	Lister	Hooded	rats	(250-402g	at	implantation)	each	received	a	single	microdrive	carrying	four	
tetrodes	of	twisted	17-25	µm	HM-L	coated	platinum-iridium	wire	(90%	-	10%)	(California	Fine	Wire,	USA)	
targeted	to	the	right	dorsal	medial	entorhinal	cortex	(mEC).	17	µm	wire	was	platinum	plated	to	reduced	
impedance	to	200-300kΩ	at	1kHz.	Surgical	procedure	and	housing	conditions	were	the	same	as	those	
described	previously	by	Barry	et	al	13.	Data	has	been	previously	analysed	in	13,14	All	experiments	were	carried	
out	in	accordance	with	the	U.K.	Animals	(Scientific	Procedures)	Act	1986.	

	

Recording	

Training	and	screening	was	performed	post-surgically	after	a	one	week	recovery	period.	An	Axona	recording	
system	(Axona	Ltd.,	St.	Albans,	UK)	was	used	to	acquire	the	single	unit	and	positional	data.	For	details	of	the	
recording	protocol	see	13,14.	The	position	of	the	rat	was	captured	using	an	overhead	video	camera	to	record	
the	position	of	the	one	or	two	LEDs	on	the	animal’s	head-stage.	The	animal’s	head	direction	was	extracted	
using	the	relative	position	of	the	two	LEDs,	one	large,	one	small,	positioned	8cm	apart	at	a	known	angle	to	the	
rat’s	head.	

All	animals	were	trained	to	forage	for	sweetened	rice	in	a	1m	by	1m	square	environment	which	consisted	of	a	
clear	Perspex	floor	and	50cm	high	Perspex	walls	fronted	with	grey	card	(north	and	south	walls)	and	black	
ribbed	card	(east	and	west	walls).	Training	consisted	of	at	least	five	trials	each	of	20	minutes,	distributed	over	
three	days.	Between	trials	the	floor	of	the	arena	was	wiped	with	a	damp	cloth	to	remove	faeces,	urine	and	
uneaten	rice.	All	subsequent	recordings	took	place	in	this	same	familiar	arena.		

Multiple	recordings	were	made	across	days	with	the	electrodes	advanced	by	50µm	between	recordings.	Each	
recording	being	20	minutes	during	which	animals	foraged	for	rice.	In	situations	where	electrodes	were	not	
advanced,	the	first	recording	made	with	the	electrodes	in	a	specific	configuration	were	submitted	to	further	
analysis.	Recordings	were	typically	ceased	after	grid	cells	were	no	longer	detected.	

	

Histology	

At	the	end	of	the	experiment	rats	received	an	overdose	of	Euthatal	(Sodium	pentobarbital)	and	were	
transcardially	perfused	first	with	phosphate	buffered	saline	and	then	with	4%	paraformaldehyde	(PFA)	
solution.	The	brains	were	removed	and	stored	in	4%	PFA	for	at	least	one	week	prior	to	sectioning.	40	µm	
frozen	sagittal	sections	were	cut,	mounted	on	gelatine-coated	glass	slides	and	stained	with	cresyl	violet.	The	
depth	and	layer	at	which	cells	were	acquired	was	extrapolated	by	reference	to	the	record	of	tetrode	
movements	after	taking	account	of	brain	shrinkage.	All	animals	were	confirmed	to	have	successful	recordings	
made	from	mEC.	

	

Data	analysis	

Spike	sorting	was	performed	offline	using	a	data	analysis	suite	(Tint,	Axona	Ltd.,	St.	Albans,	UK)	and	further	
analysis	was	conducted	using	Matlab	(Mathworks,	Natick,	Mass.	USA).	Action	potentials	were	assigned	to	
putative	cells	based	on	amplitude,	waveform	and	temporal	autocorrelation	criteria	applied	elsewhere	to	
entorhinal	grid	cells4,13.	In	each	recording	session	all	unique	cells,	including	those	without	obvious	spatial	
correlates,	were	cut.	Since	electrodes	were	typically	implanted	above	the	mEC,	only	cells	recorded	after	that	
first	grid	cell	was	identified	were	submitted	to	further	analysis	(n=704).	
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Position	and	concomitant	spikes	were	binned	into	2	x	2cm	bins.	Smoothed	firing	rate	maps	(‘ratemaps’)	were	
calculated	by	dividing	the	number	of	spikes	assigned	to	a	bin	by	the	cumulative	occupancy	of	the	bin	after	first	
convolving	both	the	spike	and	dwell	time	maps	with	a	Gaussian	kernel	(s=1.5bins).	

	

Standard	Gridness	

Standard	Gridness	was	computed	by	first	generating	the	spatial	autocorrelogram	of	the	ratemap	7.	The	
autocorrelogram	is	defined	by	Pearson’s	product	moment	correlation	coefficient	with	corrections	for	edge	
effects	and	unvisited	locations.	With	𝜆 𝑥, 𝑦 	denoting	the	average	rate	of	firing	of	a	cell	at	location 𝑥, 𝑦 ,	the	
autocorrelation	between	the	fields	with	spatial	shifts	of	𝜏&and	𝜏'	was	thus	estimated	as:		

	

𝑟 𝜏&, 𝜏' = *∑, &,' , &-./,'-.0 -	∑,(&,')∑,(&-./,'-.0)

(*∑, &,' 4- ∑, &,'
4
	 *∑, &-./,'-.0

4
-(∑, &-./,'-.0 )4

		 (1)	

	

Then	from	the	resulting	spatial	autocorrelogram	we	found	the	central	peak	and	its	surrounding	field	–	defined	
as	the	region	bounded	by	the	peak’s	half	height	-		as	well	as	the	six	closest	peaks	and	fields.	These	peaks	were	
used	to	define	an	annulus	with	the	inner	edge	being	the	boundary	of	the	central	peak	and	the	outer	edge	
being	a	circle	with	the	minimum	radius	that	would	fully	encompass	the	fields	of	the	six	closest	peaks.	The	
region	of	the	autocorrelogram	bounded	by	this	annulus	was	then	rotated	by	increments	of	307	up	to	1507	and	
for	each	rotation	a	Pearson	product	moment	correlation	coefficient	was	computed	with	the	un-rotated	mask.	
Gridness	was	then	defined	as	the	difference	between	the	lowest	correlation	with	rotations	of	607and	1207	
and	the	highest	correlations	of	rotations	with	rotations	of	307, 907	and	1507.		

	

Expanding	Gridness	

Expanding	Gridness	8	was	computed	by	defining	multiple	circular	annuli	from	the	autocorrelogram,	with	outer	
radii	increasing	in	steps	of	1	bin	(2.0cm)	from	a	minimum	of	10	cm	more	than	the	radius	of	the	central	peak,	to	
a	maximum	of	10	cm	less	than	the	width	of	the	environment.	Gridness	was	then	defined,	as	before,	for	each	
annulus	and	expanding	Gridness	was	taken	as	the	maximum	score	obtained	for	each	cell.		

	

Elliptical	Gridness	

Elliptical	Gridness	took	the	same	form	as	standard	Gridness	following	an	ellipse	fitting	and	regularisation	step	
9.	This	measure	compensates	for	single	axis	distortions	in	the	grid-pattern	by	fitting	an	ellipse	through	the	six	
central	peaks	of	the	autocorrelogram,	finding	the	transform	required	to	regularise	that	ellipse,	and	finally	
applying	that	transform	to	the	entire	autocorrelogram	before	calculating	Gridness	as	before.	First	a	linear	least	
squares	procedure	is	applied.	The	conic	equation	of	an	ellipse	is	considered:	

𝑎𝑥> + 𝑏𝑥𝑦 + 𝑐𝑦> + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0		 	 	 	 (2)	

Then	constructing	a	matrix	from	at	least	5	points	where	each	column	takes	the	form:	

𝑋 = 	
𝑥F> 𝑥F𝑦F 𝑦F> 𝑥F 𝑦F
𝑥>> 𝑥>𝑦> 𝑦>> 𝑥> 𝑦>
. . . . .

H

		 	 	 	 	 (3)	

	

And	the	parameters	vector	𝐴	is	constructed	as:		
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𝐴 = 	

𝑎
𝑏
𝑐
𝑑
𝑒

		 	 	 	 	 	 	 (4)	

With	the	target	vector		𝑓	:		

𝑓 = 𝑓	

1
1
1
1
1

			 	 	 	 	 	 	 (5)	

	

Therefore	minimizing	||𝑓 − 𝐴𝑋||>	with	respect	to	𝐴	gives	the	standard	linear	least	squares	solution:		

𝐴 = 𝑋H𝑋 -F𝑋H𝑓	 	 	 	 	 	 (6)	

Once	we	estimate	these	parameters	it	is	trivial	to	calculate	the	orientation	and	length	of	the	minor	and	major	
axis	of	the	ellipse	and	we	use	this	information	to	resize	the	autocorrelogram	such	that	the	major	axis	is	
compressed	to	the	length	of	the	minor	axis.	

Following	this	regularization,	standard	Gridness	was	calculated	on	the	transformed	autocorrelogram.	In	
situations	where	fewer	than	six	peaks	were	found	to	surround	the	origin,	the	regularisation	step	was	not	
applied	and	standard	Gridness	was	calculated	in	lieu.		

	

Expanding	elliptical	Gridness	

Expanding	elliptical	Gridness	was	generated	by	first	applying	the	regularisation	step	described	for	elliptical	
Gridness	followed	by	the	procedure	for	calculating	expanding	Gridness	3,10.	

	

Shuffling	Procedures	

Two	permutation	methods	were	applied	in	order	to	generate	null	distributions	against	which	the	significance	
of	Gridness	scores	were	tested:	spike	shuffling	and	field	shuffling.	In	each	case	data	from	each	cell	was	used	to	
establish	a	threshold	for	that	cell.	Specifically,	for	each	cell,	the	shuffling	procedures	were	applied	100	times,	
generating	a	population	of	ratemaps.	The	Gridness	scores	of	these	ratemaps	were	calculated,	forming	a	null	
distribution.	Finally,	the	95th	percentile	of	these	distributions	were	used	to	set	a	significance	threshold,	such	
that	cells	with	Gridness	exceeding	this	threshold	were	classified	as	grid	cells.		

Spike	shuffling	

Spike	shuffling	was	performed	as	described	in	8,11.	Specifically	the	spike	train	for	each	cell	was	permuted	in	
time	by	a	random	number	∈ [20, 𝑑 − 20]	seconds	where	𝑑	is	the	trial	duration.	The	new	time	indices	of	spikes	
which	exceed	the	trial	duration	were	wrapped	around	to	the	beginning	of	the	spike	train.	The	effect	of	this	
procedure	was	to	preserve	the	temporal	characteristics	of	the	spike	train	–	the	inter	spike	intervals	-	while	
disrupting	the	relationship	between	spikes	and	an	animal’s	spatial	behaviour	(which	was	indexed	by	the	spike	
time).	

Field	shuffling	

Spatial	shuffling	12	provides	a	means	to	disrupt	the	long-range	spatial	topography	of	a	ratemap	while	
preserving,	as	far	as	possible,	the	short-range	topography	of	the	fields.	First,	fields	within	each	ratemap	were	
segmented	by	applying	a	watershedding	procedure	to	a	highly	smoothed	version	of	the	ratemap	(2cm	bins,	
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Gaussian	kernel	s=3bins).	The	bin	with	the	highest	firing	rate	–	the	peak	bin	-	within	each	field	was	identified.	
Subsequent	steps	were	performed	on	ratemaps	that	had	received	a	standard	level	of	smoothing	(Gaussian	
kernel	s=1.5bins).	The	peak	bin	of	each	field	was	copied	to	a	random	position	within	the	corresponding	
shuffled	ratemap.	Bins	around	each	peak	were	then	copied	to	the	shuffled	ratemap,	retaining	as	far	as	possible	
their	proximity	to	their	peak	bin.	This	procedure	was	applied	incrementally	to	each	field	as	follows.	The	fields	
were	numbered	in	a	random	order,	then	starting	with	the	first	field	a	bin	immediately	adjacent	to	the	peak	bin	
was	selected	from	the	original	ratemap	and	placed,	as	far	as	possible,	in	the	same	relative	position	to	the	peak	
bin	in	the	shuffled	ratemap.	If	this	location	was	not	available	or	already	occupied	the	next	nearest	bin	was	
used.	The	same	procedure	was	then	applied	to	the	closest	bin	to	the	peak	of	each	field.	When	a	single	bin	had	
been	replaced	from	each	field,	the	second	closest	bins	were	replaced	in	the	same	order.	Ultimately	the	
procedure	was	repeated	until	all	bins	within	the	original	ratemap	had	been	copied	to	the	shuffled	ratemap.	
Unvisited	bins	were	not	moved.		

	

Simulated	Inhomogeneous	Spatial	Firing	

We	created	synthetic	non-periodic	spatial	firing	by	randomly	placing	spatial	fields	–	modelled	as	summed	
symmetric	2-d	Gaussians	-		into	a	1m	square	enclosure.	The	number	and	size	of	fields	were	chosen	to	
correspond	to	grid	cells	with	scales	of	20	to	80cm,	this	range	was	explored	in	5cm	increments.		

Specifically,	the	standard	deviation	of	the	Gaussians	was	defined	as:	

sgrid	=	0.125		lgrid			 	 	 	 	 	 	 (7)	

where	lgrid	is	the	grid	scale	being	matched,	and	the	number	of	fields	was	defined	as:	

𝑛PQRS	 = 	lPQRS	 tan
>W
X
		 	 	 	 	 	 	 (8)	

For	each	grid	scale	1000	synthetic	ratemaps	were	generated,	with	the	peak	firing	rate	being	10Hz.	Next,	to	
convert	these	idealised	ratemaps	to	time	series	of	neural	data	with	matching	behaviour,	we	used	positional	
data	derived	from	ten	20	minute	trials	in	which	mEC	implanted	rats	foraged	for	rice	in	a	familiar	1m	square	
enclosure	14.	Positional	data	was	sampled	at	50Hz,	thus	each	20	minute	trial	yielded	60,000	(x,y)	pairs,	
indicating	the	animals’	locations	during	the	trials.	These	data	were	split	into	1	minutes	chunks,	of	3,000	(x,y)	
pairs,	and	for	each	synthetic	ratemap,	20	minutes	of	behaviour	was	generated	by	drawing	at	random	twenty	1	
minute	chunks	and	concatenating	them.	To	generate	corresponding	spike	time	series,	the	surrogate	positional	
data	was	subsampled	at	2ms	intervals	and	at	each	interval	the	animal’s	position	used	to	determine	an	
expected	firing	rate	and	thus	expected	number	of	spikes	in	the	interval.	

Finally,	a	Poisson	point	process	was	used	to	determine	if	1	or	0	spikes	was	present	in	each	interval.	The	
synthetic	data	generated	in	this	way	was	then	binned	into	ratemaps	and	processed	as	described	above	in	
order	to	determine	the	Gridness	of	the	simulated	spatial	fields.	The	significance	of	the	Gridness	measure	was	
then	assessed	relative	to	spike	and	field	shuffled	null	distributions	derived	from	the	same	data.	Thus,	each	
simulated	cell	was	categorised	as	a	grid	cell	or	not	and	the	proportion	of	‘grid	cells’	of	each	scale	were	
calculated.		
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Results	

Distributions	of	Gridness	in	spike-shuffled	and	field-shuffled	data.	

To	illustrate	the	effects	of	spike	shuffling	and	field	shuffling	we	use	a	single	unit	from	dorsomedial	entorhinal	
cortex,	which	clearly	exhibits	a	regular	triangular	symmetry	(i.e.	a	grid	cell).	Figure	1	shows	the	effects	of	spike	
shuffling	and	field	shuffling	on	the	firing	rate	maps	of	this	cell.	Figure	2	shows	the	distributions	of	Gridness	
found	in	the	populations	of	firing	rate	maps	created	by	spike	shuffling	shuffling	and	field	shuffling	shuffling	of	
the	data	from	the	two	cells	shown	in	Figure	1.	The	distributions	of	Gridness	are	shown	for	the	four	different	
measures	of	Gridness	currently	in	use.	

Figure	2	illustrates	our	concern	regarding	the	use	of	spike	shuffled	null	distributions.	The	grid	cell	classifies	as	a	
grid	cell	relative	to	both	spike	shuffled	and	field	shuffled	distributions	-	its	Gridness	value	exceeds	the	95th	
percentile	of	both	shuffled	distributions.	However,	the	thresholds	obtained	by	the	different	shuffling	
procedures	varies	considerably.	For	example,	the	standard	Gridness	threshold	(Figure	2,	column	1)	obtained	
from	a	spike	shuffle	was	0.13	whereas	a	field	shuffle	yielded	a	threshold	of	0.31	(Figure	2,	top	and	bottom	
respectively).	Clearly	some	cells	that	are	identified	as	grid	cells	relative	to	the	spike	shuffled	threshold	would	
not	exceed	a	threshold	identified	from	a	field	shuffling	procedure.	Thus,	there	is	likely	to	be	a	difference	in	the	
false	positive	rates	obtained	by	these	different	approaches.	

Figure	1.	Effect	of	spike	and	field-shuffles	on	spatial	firing.	Left,	firing	rate	map	for	a	mEC	grid	cell.	Peak	rate	and	standard	
Gridness	score	are	shown	above	the	ratemap.	Right	top,	five	firing	rate	maps	derived	from	spike-shuffled	permutations	of	
the	grid	cell	firing.	Firing	maps	are	relatively	homogeneous	and	exhibit	low	Gridness	scores.	Bottom,	ratemaps	derived	
from	a	field	shuffling	procedure.	The	local	topography	of	fields	is	preserved	while	their	global	topography	is	perturbed.	The	
range	of	firing	rates	and	the	inhomogeneity	of	their	spatial	distribution	better	matches	the	original	map.		

	

Similarly,	the	absolute	values	of	Gridness	vary	considerably	according	to	which	version	of	the	Gridness	
measure	is	used	(Figure	2).	Gridness	values	are	higher	for	the	expanding	Gridness	measure	(column	3),	as	it	
takes	the	maximum	Gridness	value	over	several	sizes	of	annulus,	and	for	the	elliptical	Gridness	measures	
(column	2)	as	any	elliptical	distortion	in	the	data	is	“corrected”	to	circular	before	Gridness	is	calculated.	The	
combination	of	both	elliptical	and	expanding	Gridness	(column	4)	yields	the	highest	values.	Thus,	absolute	
values	of	Gridness	cannot	be	compared	between	papers	that	use	different	versions	of	the	Gridness	measures,	
and	“rules	of	thumb,”	such	as	accepting	regular	Gridness	scores	exceeding	fixed	values	will	be	much	more	
lenient	if	used	with	expanding	or	elliptical	Gridness,	with	expanding	elliptical	Gridness	being	the	most	
permissive.		
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Figure	2.	The	distribution	of	the	four	measures	of	Gridness	generated	by	spike	shuffling	(top	row)	and	field	shuffling	
(bottom	row)	of	the	data	from	the	cell	in	Figure	1.	Each	distribution	is	generated	from	100	shuffles	of	the	data	and	the	
Gridness	measures	(columns)	are	in	left	to	right	order:	standard	Gridness	7,	elliptical	Gridness	9,	expanding	Gridness	8,	and	

the	combination	of	expanding	and	elliptical	Gridness	3.	The	title	of	each	plot	indicates	the	95th	percentile	threshold	
extracted	from	each	distribution,	typically	used	to	identify	grid	cells.	

	

The	Gridness	of	simulated	spatially	irregular	firing	patterns		

We	simulated	inhomogeneous	irregular	firing	patterns	to	test	the	false-positive	rate	of	grid	cell	identification.	
Spatially	irregular	Poisson	firing	patterns	were	generated	from	spatial	firing	rate	distributions	formed	from	
summed	randomly	placed	Gaussians	(see	Methods	for	details).	Specifically,	ratemaps	corresponded	to	1m	x	
1m	square	enclosures,	with	the	size	and	number	of	fields	within	the	enclosure	chosen	to	match	grid	cells	of	
scales	between	20	and	80cm	7.	

Figure	3	shows	the	proportions	of	simulated	spatially	irregular	cells	that	are	classified	as	grid	cells	(i.e.	whose	
Gridness	exceeds	the	95th	percentile	of	the	distribution	of	Gridness	in	their	shuffled	populations).	For	all	types	
of	Gridness	measure,	the	false	positive	rate	is	usually	greater	than	the	5%	rate	one	would	expect,	confirming	
our	suspicion	that	current	standard	methods	are	susceptible	to	false	positives	when	applied	to	populations	of	
cells	with	spatially	inhomogeneous	(but	irregular)	firing	patterns.	False	positive	rates	are	on	the	whole	lower	
when	using	field-shuffled	rather	than	spike-shuffled	significance	thresholds,	and	diverge	less	from	the	
expected	5%	false-positive	rate;	thus,	indicating	a	partial	solution	to	the	problem.			
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Figure	3.	Gridness	thresholds	and	corresponding	false	positive	rates	for	classifying	simulated	inhomogeneous	irregular	
firing	patterns	as	“grid	cells”.	a)	95th	percentile	Gridness	thresholds	derived	from	shuffles	of	synthetic	spatially	aperiodic	
cells	under	four	methods	of	assessing	Gridness.	Red,	threshold	derived	from	spike	shuffling,	green	from	field	shuffling,	
black	dotted	line	is	the	mean	Gridness	obtained	for	each	scale	in	the	simulated	data.	b)	Proportion	of	‘grid	cells’	identified	
from	the	irregular	simulated	firing	patterns	using	the	thresholds	in	(a).	When	using	spike	shuffling	to	establish	the	null	
distribution,	false	positive	rates	reach	~20%	of	the	elliptical	Gridness	measure	and	~16%	for	the	standard	Gridness	
measure.	When	using	field	shuffling,	false-positive	rates	stay	much	closer	to	5%	and	are	generally	below	8%.	

		

The	simulations	show	a	tendency	for	the	absolute	value	of	the	95th	percentile	threshold	obtained	from	spike	
shuffling	to	be	unaffected	by	the	scale	of	the	simulated	spatial	pattern.	Conversely,	the	threshold	obtained	for	
field-shuffles	does	markedly	depend	upon	the	scale,	and	hence	the	number	of	fields	within	the	pattern.	In	
turn,	the	mean	Gridness	observed	in	the	synthetic	cells	also	shows	a	similar	dependence	on	scale;	being	on	the	
whole	lower	at	larger	scales.			

The	false-positive	rate	under	the	spike-shuffle	method	has	a	complicated	relationship	with	the	size	of	the	
simulated	pattern;	greatly	exceeding	5%	in	many	situations.	In	general,	it	tends	to	be	highest	for	spatial	
patterns	with	a	number	of	fields	equivalent	to	grid	cells	with	a	spatial	scale	of	40-50cm	–	having	7.2	and	6.3	
fields	respectively,	on	average.	Possibly	the	presence	of	this	number	of	patches	maximises	the	chance	of	high	
“Gridness”	despite	being	irregularly	located.	The	false	positive	rate	under	the	spike-shuffle	method	also	tends	
to	be	slightly	lower	for	both	the	expanding	Gridness	based	measures,	being	highest	for	elliptical	Gridness	and	
standard	Gridness	measures.	In	contrast	to	the	spike-shuffled	method	the	field-shuffle	method	exhibits	lower	
false-positive	rates	at	most	of	the	scales	tested	(Figure	3).		

	

The	Gridness	of	data	from	rat	medial	Entorhinal	Cortex			

We	applied	these	methods	to	a	sample	of	single	units	recorded	from	the	medial	Entorhinal	Cortex	(mEC)	of	
foraging	rats.	Tetrodes	were	advanced	between	recording	sessions,	ensuring	that	candidate	cells	were	
recorded	only	once.	Similarly,	all	putative	neurons	identifiable	from	their	waveforms	were	manually	cluster	cut	
(n=704).	Note	that	these	implants	were	aimed	at	recording	grid	cells,	and	recording	terminated	when	no	more	
grid	cells	were	found,	creating	a	higher	proportion	of	grid	cells	than	might	be	found	in	an	unbiased	sample	of	
cell.	
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The	proportions	of	active	cells	that	are	classified	as	grid	cells	in	the	entire	dataset	ranges	between	22.4%	to	
24.3%	when	using	a	95%	spike	shuffled	threshold,	and	between	19.0%	to	21.7%	with	a	95%	field	shuffled	
threshold	(Figure	4),	depending	on	the	exact	measure	of	Gridness	used.			

	

Figure	4.	Proportion	of	grid	cells	found	using	the	95th	percentile	of	spike	and	field	shuffled	distributions	in	single	unit	
recordings	made	from	tetrodes	located	in	rat	mEC.	Red	bars	indicated	the	proportion	of	cells	identified	on	the	basis	of	a	
spike	shuffle	and	green	on	the	basis	of	a	field	shuffle.	
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Discussion		

Standard	methods	for	detecting	grid	cells	in	neural	firing	data	from	freely	behaving	animals	involve	the	use	of	
a	statistical	threshold	based	on	spike-shuffled	data	representing	the	null	hypothesis	(absence	of	grid	cells).	We	
worried	that	this	method	is	vulnerable	to	false-positives	caused	by	the	unavoidable	spatial	inhomogeneity	in	
data	from	freely-behaving	animals.	This	inhomogeneity	arises	because	movements	and	perceptual	stimuli	tend	
to	be	inhomogeneously	distributed	in	space	during	normal	behavior,	so	that	neural	responses	to	either	could	
be	mistaken	for	spatial	coding	(see	e.g.	Burgess	et	al.	15	regarding	the	dependencies	between	directional	and	
locational	coding).	By	contrast,	such	inhomogeneity	is	typically	not	present	in	spike-shuffled	data,	reducing	its	
ability	to	model	the	null	hypothesis	for	this	type	of	data.					

Our	simulations	demonstrate	the	potential	vulnerability	of	the	standard	method	for	false	detection	of	grid	cells	
when	applied	to	synthetic	spatially	inhomogeneous	(but	irregular)	firing	patterns.	We	found	a	surprisingly	high	
false	positive	rate	for	a	95%	threshold	(exceeding	19%	in	some	cases	vs.	an	expected	level	of	5%).	We	also	
showed	that	using	field	shuffling	rather	than	spike	shuffling	to	control	the	false-positive	rate	in	these	
circumstances	has	some	benefits	(the	false	positive	rate	is	lower,	below	8%	for	the	standard	Gridness	
measure).		Our	simulated	false	positive	rates	(Figure	3)	may	represent	a	“worse-case”	scenario,	in	that	we	
explicitly	chose	the	spatial	inhomogeneity	to	resemble	that	of	grid	cells	in	the	size	and	number	of	Gaussian	
patches,	despite	their	irregular	spatial	distribution.	However,	the	proportions	of	cells	classified	as	grid	cells	
with	the	spike	and	field	shuffle	methods	did	not	vary	as	dramatically	in	real	data	from	mEC	(i.e.	a	difference	of	
around	2-5%,	Figure	4),	suggesting	that	the	populations	there	did	not	contains	such	a	high	proportion	of	cells	
with	irregular	patchy	firing	patterns.	

In	conclusion,	statistical	analysis	of	“Gridness,”	based	on	the	standard	spike	shuffling	method	applied	to	freely	
behaving	animals,	are	vulnerable	to	false	positive	rates	potentially	approaching	20%,	depending	strongly	on	
the	scale	of	spatial	pattern	and	type	of	Gridness	measure.	The	use	of	spatial	field	shuffling	can	reduce	the	false	
positive	rate	somewhat	(to	less	than	8%)	and	shows	a	less	marked	dependence	on	spatial	scale.	Thus,	the	use	
of	field	shuffling	can	be	a	partial	solution	to	the	problem.	However,	the	variability	in	the	Gridness	scores	for	
aperiodic	spatial	patterns	of	different	scales	indicates	the	necessity	to	generate	null	distributions	on	a	per	cell	
basis,	rather	than	generating	a	single	threshold	for	an	entire	population.	In	addition,	independent	
corroboration	of	genuine	Gridness	is	advisable	where	detected	proportions	of	grid	cells	approach	the	potential	
false-positive	rate.	Two	simple	and	commonly	employed	practises	are	available:	to	explicitly	present	all	firing	
patterns,	so	that	the	regularity	of	the	pattern	can	be	observed	by	eye	(see	Figures	1-2);	and	to	demonstrate	
that	similarly	regular	patterns	generated	from	the	same	cell	are	observable	in	a	second	spatial	setting	and	so	
not	a	simple	confound	of	the	inhomogeneous	distribution	of	a	behavioural	variable	in	one	setting.	
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