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Abstract

Place cells in the mammalian hippocampus signal self-location with sparse spatially
stable firing fields. Based on observation of place cell activity it is possible to accurately
decode an animal’s location. The precision of this decoding sets a lower bound for the
amount of information that the hippocampal population conveys about the location of
the animal. In this work we use a novel recurrent neural network (RNN) decoder to
infer the location of freely moving rats from single unit hippocampal recordings. RNNs
are biologically plausible models of neural circuits that learn to incorporate relevant
temporal context without the need to make complicated assumptions about the use of
prior information to predict the current state. When decoding animal position from
spike counts in 1D and 2D-environments, we show that the RNN consistently
outperforms a standard Bayesian model with flat priors. In addition, we also conducted
a set of sensitivity analysis on the RNN decoder to determine which neurons and
sections of firing fields were the most influential. We found that the application of
RNNs to neural data allowed flexible integration of temporal context, yielding improved
accuracy relative to a commonly used Bayesian approach and opens new avenues for
exploration of the neural code.

Author summary

Being able to accurately self-localize is critical for most motile organisms. In mammals,
place cells in the hippocampus appear to be a central component of the brain network
responsible for this ability. In this work we recorded the activity of a population of
hippocampal neurons from freely moving rodents and carried out neural decoding to
determine the animals’ locations. We found that a machine learning approach using
recurrent neural networks (RNNs) allowed us to predict the rodents’ true positions more
accurately than a standard Bayesian method with flat priors. The RNNs are able to
take into account past neural activity without making assumptions about the statistics
of neuronal firing. Further, by analyzing the representations learned by the network we
were able to determine which neurons, and which aspects of their activity, contributed
most strongly to the accurate decoding.
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Introduction 1

Place cells, pyramidal neurons found in CA1 and CA3 of the mammalian 2

hippocampus [1–4], exhibit spatially constrained receptive fields, referred to as place 3

fields. In general, the activity of place cells is considered to be stable [5, 6]; place fields 4

are typically robust to the removal of specific environmental cues [7, 8], persist between 5

visits to a location [9], and in the open field do not strongly depend upon an animal’s 6

behaviour [2, 5]. Upon exposure to a novel enclosure the firing correlates of place cells 7

rapidly ‘remap’; place fields change their firing rate and relative position, forming a 8

distinct representation for the new space [10–12]. For these reasons place cells are widely 9

held to provide the neural basis of self-location, signalling the position of an animal 10

relative to its environment and thus being a necessary element for the control of spatial 11

behaviours, such as navigation, and the retention of spatial memories [2]. Unsurprisingly 12

then, given information about the activity of a population of place cells, it is possible to 13

decode the location of an animal with a relatively high degree of accuracy [13,14]. 14

However, although place cell activity is strongly modulated by self-location this 15

relationship is non-trivial and not exclusive. For example, during rest and brief pauses, 16

but also during motion, the place code can decouple from an animal’s current location 17

and recapitulate trajectories through the enclosure [15]; ‘replaying’ previous 18

experience [16] or, perhaps, foreshadowing future actions [17]. Similarly, when animals 19

run on linear runways or perform constrained navigational tasks, such as T-maze 20

alternation, place cell activity becomes strongly modulated by behaviour, 21

disambiguating direction of travel [18], prospective and retrospective trajectories [19,20], 22

and the degree of engagement with a task [21]. Furthermore, although place fields are 23

repeatable they are not static. Even though remapping occurs rapidly in a novel 24

environment, the newly formed firing fields continue to be refined during subsequent 25

experience, a process that appears to persist for several hours [10,13,22,23]. Even in 26

familiar environments, that animals have visited many times, the spatial activity of 27

place cells is known to exhibit incremental changes that can result in the generation of 28

distinct spatial codes [23–26], which might be important for encoding goal locations [27] 29

or other non-spatial variables [28]. As such, although hippocampal activity provides 30

considerable information about an animal’s self-location the representation is dynamic: 31

accumulating changes and sometimes encoding other variables both spatial and 32

non-spatial. 33

A common approach used to interrogate neural representations, such as that of place 34

cells, is decoding; the accuracy with which a variable, such as self-location, can be 35

decoded from the brain, places a useful lower limit on the amount of information 36

present [13,14]. In the case of place cells, decoding methodologies typically apply a 37

Bayesian framework to calculate a probability distribution over the the animal’s 38

position, given the observed neural data [14, 16]. Decoding to a specific location is then 39

accomplished via a maximum likelihood estimator applied to the probability 40

distribution. However, the accuracy of Bayesian methods depends on accurate 41

information about the expected activity of neurons. For place cells, activity recorded 42

over the course of tens of minutes is typically used to estimate the firing rate of each 43

cell at different points in the animal’s enclosure, with instantaneous rates assumed to 44

exhibit Poisson dynamics. However, for the reasons outlined above, it is not clear that 45

hippocampal activity can be modelled in this way. Indeed, the variability of place cell 46

firing rates is known to greatly exceed that expected from a Poisson process [29]. As 47

such, it is likely that Bayesian methods, as currently applied, do not provide an 48

accurate reflection of the accuracy with which the hippocampus encodes self-location. 49

To better understand these constraints, we trained a deep recurrent neural network 50

(RNN) [30–32] to decode rodent location from the firing rate of CA1 neurons. At each 51

time step the network was presented with a vector corresponding to the spike counts of 52
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hippocampal cells within a given time window. After accumulating information for 100 53

time-steps the network was required to predict the animal’s location – supervision being 54

provided in the form of the animal’s true location. We found that decoding with the 55

trained RNN was consistently more accurate than a standard Bayesian approach [14,16]. 56

This demonstrates that RNNs are able to capture the relationship between a temporal 57

sequence of neural activity and an encoded variable without the necessity of explicit 58

assumptions about the underlying noise model or complicated hand-coded priors. 59

Further, inspection of the trained network allowed us to identify both the relative 60

importance of individual neurons for accurate decoding and the locations at which they 61

were most informative. Thus, not only does the accuracy of the RNN set a new limit for 62

the amount of information about self-location encoded by place cells but more generally 63

this work suggests that RNNs provide a useful approach for neural decoding and 64

provide a means to explore the neural code. 65

Results 66

High accuracy decoding of self-location in 2D environments 67

To test the RNN’s ability to decode rodent location based on hippocampal activity we 68

first characterized the decoding error for a single animal foraging in a 2D arena (1m x 69

1m square). Single unit recordings were made using tetrodes from region CA1 of five 70

rats. Rat R2192 yielded the greatest number of simultaneously recorded hippocampal 71

neurons (n=63). Since the number of recorded neurons is expected to correlate with 72

decoding accuracy, we first focused on this particular animal. 73

Neural data was processed to extract action potentials and these were assigned to 74

individual neurons using the amplitude difference between tetrode channels [33] (see 75

Methods). The input features for the RNN-decoder then consisted of spike counts for 76

each neuron within a set of time windows. The length of time windows was 77

parametrically varied between 200 ms and 4000 ms in 200 ms increments. Each 78

consecutive window started 200 ms later than previous one (this means 0% overlap for 79

200 ms windows, 50% overlap for 400 ms windows, 80% overlap for 1000 ms windows, 80

etc. See ”Feature extraction” in Methods). The network was presented with spike 81

counts from 100 windows before being asked to predict the animal’s location at the 82

center of the latest window. 83

As the RNN training process is stochastic, 10-fold cross validation (CV) procedure 84

was run multiple times for each window size. For each of these runs we trained 10 85

models (for each fold of CV) and extracted the mean and median results across the 86

folds. Black dots on Fig 1 correspond to these different realizations of the 10-fold CV 87

procedure (notice multiple dots per window size). 10-fold cross validation was also 88

applied to the Bayesian decoder. 89

For both the mean (Fig 1a) and median (Fig 1b) of the validation errors, the error 90

curve was convex with lowest errors obtained at intermediate values. Best median 91

decoding accuracy was achieved with time window of 1200 ms (median error = 92

10.18± 0.23 cm). Best mean decoding was achieved for a timewindow of 1400 ms (mean 93

error = 12.50± 0.39) cm). Using longer or shorter time windows lead to higher errors – 94

likely because spike counts from shorter windows are increasingly noisy, while the 95

animal’s CA1 activity is less specific to a particular location for longer windows. For all 96

time windows, the accuracy of the RNN considerably exceeded that of the Bayesian 97

decoder (red line). The lowest median decoding error with Bayesian decoder was 12.16 98

cm (19.5% higher than for the RNN ; this best accuracy could be obtained with 99

multiple different window sizes for Bayesian), lowest mean error was 15.83 cm with 2800 100

ms windows. 101
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Fig 1. Accurate decoding of position with a RNN. Location decoding errors
based on CA1 neural data recorded from 1m square open field environment as a
function of time window size (mean error in left panel, median error in right panel).
Blue lines represent errors from the RNN decoder and red lines from a Bayesian
approach. Results for the RNN approach are averaged over different independent
realizations of the training algorithm. Black dots depict the mean/median error of each
individual model. Results shown are for animal R2192.

The RNN has the ability to flexibly use information from all 100 input vectors and 102

thus integrates contextual information over time. This results in lower mean and 103

median errors as compared to a baseline Bayesian approach that does not have access to 104

information about past activity. In particular, that RNN approach achieves its best 105

results for shorter time windows than the Bayesian approach. We hypothesize that 106

having access to contextual information helps to overcome the stochastic noise in the 107

spike counting obtained for shorter time windows. 108

Beyond the global descriptors of mean and median error, we also inspected the 109

distribution of decoding error sizes (Fig 2a). For the RNN the distribution followed a 110

unimodal curve with most predictions deviating from the rat’s true position by 6-8 cm. 111

Few errors were larger than 35 cm (1.7 % of errors > 35 cm). The simple Bayesian 112

classifier achieves more very low (< 2 cm) errors, but also an abundance of very large 113

(> 50 cm) errors (7.9 % of errors > 35 cm, 2.8 % > 50 cm). 114

In many cases single unit recordings yield fewer than the 63 neurons identified from 115

R2192. We hypothesised that the RNN’s ability to use contextual information would be 116

increasingly important in scenarios where neural data was more scarce. To test this 117

prediction we randomly downsampled the dataset available from R2192, repeating the 118

training and decoding procedure for populations of neurons varying in size from 5 to 55 119

in increments of 5. As expected we saw that decoding accuracy reduced as the size of 120

the dataset reduced. However the RNN was considerably more robust to small sample 121

sizes, decoding with an error of 30.9 cm with only 5 neurons vs. 46.0 cm error for the 122

Bayesian decoder (Fig 2b). 123

Population-level results in 2D and 1D environments 124

In total we analyzed recordings gathered during 2D open field free foraging task from 125

five animals (1m x 1m square). For each of these 5 datasets, we determined the best 126

performing time window size for the RNN and Bayesian decoder (similarly to Fig 1). 127

The optimal time window sizes for the five 2D foraging datasets are given in Table 1 128

along with the length of the recording and the number of identified neurons. 129

In the 2D decoding task, for different animals, the mean error across cross validation 130

folds ranges between 12.5-16.3 cm and median between 10.3-13.1 cm (Fig 3a- b). 131

Interestingly, despite some recordings yielding as few as 26 or 33 cells, the decoding 132

accuracy using RNNs is roughly similar. In all cases the mean and median decoding 133

results from the 2-layer LSTM RNN outperformed the standard Bayesian approach. 134
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Fig 2. Comparison of RNN and Bayesian decoders (a) Histogram of error sizes,
generated in each case with the best performing time window (1400 ms for RNN, 2800
ms for Bayesian). The Bayesian decoder makes more very large errors (0.02% vs 2.8% of
errros > 50 cm). Errors are grouped into 2 cm bins, the last bin shows all errors above
50 cm. (b) Downsampling analysis demonstrates the RNN decoder is more robust to
small dataset sized. Data from R2192 was downsampled such that both decoders were
trained with a random subset of the available neurons. For each sample size, 10 random
sets of neurons were selected and independent models trained as before using 10-fold
cross validation. Dots represents median error for each downsampled dataset. Lines
indicate the mean over sets of the same size.

Rat
ID

Length of
recording
in 2D

Neurons
recorded
in 2D

Optimal time
window for
RNN in 2D

Length of
recording
in 1D

Neurons
recorded
in 1D

Optimal time
window for
RNN in 1D

R2192 1081 s 63 1400 ms 1394 s 72 1400 ms

R2198 1281 s 33 2000 ms 1934 s 49 2200 ms

R2336 1234 s 48 1800 ms 1900 s 71 1400 ms

R2337 1456 s 43 1800 ms 2778 s 71 1600 ms

R2217 1500 s 26 1600 ms 1595 s 40 1400 ms

Table 1. Datasets for 2D and 1D decoding tasks. Number of data points,
number of recorded neurons, and the optimal time window for the RNN decoder for
each of the 5 analyzed animals and for both decoding tasks.

We also performed decoding on 1D datasets recorded while the same 5 animals 135

shuttled back and forwards on a 600 cm long Z-shaped track for reward placed at the 136

corners and ends (Table 1) [34]. As before we applied RNN and Bayesian decoders to 137

10-fold cross validated data, selecting in each case the optimal time window size (Table 138

1). The RNN decoder greatly outperformed the baseline Bayesian decoder in all 5 data 139

sets when comparing mean errors (Fig 3c). However, notice that the Bayesian decoder 140

is a classifier — it is penalized as much for small mistakes as it is for large ones, making 141

it by design more prone to very large mistakes. In the 2D task the largest possible error 142

was 141.7 cm (if the predicted location is in the corner diagonally opposite to the true 143

location), whereas in 1D task it is 600cm (if the opposite end of the track is predicted). 144

In the 1D task a small number of extremely large errors will inflate the mean error, 145

whereas the median will be less affected (Fig 3c-d). Examining the median errors we 146

found that RNN outperformed the Bayesian decoder in all cases. However for four of the 147

five animals the difference in error was relatively small (Fig 3d). For the fifth rat with 148

the fewest cells (R2117, n=40), the RNN clearly outperformed the Bayesian approach, 149

having a median decoding error that was almost half that of the Bayesian decoder. 150
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Fig 3. Spatial decoding across animals in 2D and 1D environments. (a-b)
Decoding results in a 1m square environment. RNN consistently outperforms the
standard Bayesian approach in all 5 data sets. Mean and median errors across cross
validation folds, respectively. (c-d) Decoding errors from a 600 cm long Z-shaped track.
RNN consistently yields lower decoding errors than a Bayesian approach, the difference
is more marked when mean (c) as oppose to median (d) errors are considered.

Analysis of results obtained with RNN-decoder 151

Next to understand how behavioural and neural variability influenced decoding 152

accuracy we focused on the results obtained from rat R2192 in the 1m square — the 153

animal with the greatest number of neurons and the lowest decoding error). 154

First we examined the decoding error as a function of the rat’s location. It is 155

important to note that the animals’ behaviour is non-uniform — the rats visits some 156

parts of the arena more often than others (see Fig 4a). Since more training data is 157

available for frequently visited regions it is expected that any decoding approach would 158

be most accurate in those locations. The spatial distribution of decoding error for R2192 159

seems to confirm this conjecture — well sampled bins in the center of the enclosure and 160

portions of its borders are more accurately decoded (Fig 4b). To confirm this, we 161

calculated the correlation between the decoding error and the number of training data 162

points located within 10 cm radius of the predicted data point, finding a significant 163

negative correlation (Spearman’s Rank Order, r = −0.16, pval << 0.001, dof = 4412). 164

Another important factor influencing the decoding accuracy is the distribution of 165

neural activity across the 2D enclosure. In particular, place fields of the recorded 166

hippocampal cells do not cover the enclosure uniformly. Clearly it would be difficult for 167

the algorithm to differentiate between locations where no cell is active. As such, it is 168

likely that areas where more neurons are activated are decoded with higher precision. 169

Our results confirm that the sum of spike counts across neurons at a given location is 170

strongly anti-correlated with the prediction error made at that location (Fig 4c, 171

Spearman’s Rank Order, r = −0.31, pval << 0.001, dof = 4412). 172

We also inspected the x and y components of the decoding error separately. 173
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(a) (b)

(c) (d)

Fig 4. Analysis of the errors in function of location and neural activity for
rat R2192. (a) The trajectory of the rat during the entire trial. Not all parts of the
arena are visited with equal frequently. (b) The average size of errors made in different
regions of space. Color of each hexagon depicts the average euclidean error of data
points falling into the hexagon. More frequently visited areas (as seen from (a)) tend to
have lower mean error. (c) Sum neural activity in different regions of space. For each
data point we sum the spike counts of all 63 neurons in a 1400 ms period centered
around the moment the location was recorded. The color of the hexagon corresponds to
the average over all data points falling into the hexagon. Areas where sum neural
activity is high have lower prediction error. (d) Prediction error of a coordinate
decreases if the animal is closer to the wall perpendicular to that coordinate.

Previous work suggests that, in the case of grid cells, contact with an environmental 174

boundary results in a reduction of error in the representation of self-location 175

perpendicular to that wall [35]. Such a relationship would be expected if boundaries 176

function as an elongated spatial cue, used by animals to update their representation of 177

self-location relative to it’s surface. Accordingly, we found that for RNN decoding based 178

on CA1 neurons, the decoding accuracy orthogonal to environmental boundaries 179

increased with proximity to that boundary (Fig 4d, Spearman’s Rank Order between 180

error and distance to wall in the region up to 25cm from the wall, r = 0.31, p << 0.001, 181

dof = 3968 . The result also held for x (r = 0.35, p << 0.001, dof = 2101) and y 182

(r = 0.25, p << 0.001, dof = 1855) coordinates separately. Conversely, decoding error 183

parallel to the boundary was not modulated by proximity. 184

Furthermore, an additional factor that seemed to influence prediction accuracy was 185

the animal’s motion speed. Predictions were more reliable when the rat was moving as 186

opposed to stationary. The mean prediction error for speeds below 0.5 cm/s being 16.5 187

cm, higher than the 12.1 cm average error for all speeds above 0.5 cm/s (two-sided 188
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Welch’s t-test, t = 10.62, p << 0.001, median errors 8.68 cm and 7.74 cm accordingly). 189

It seems plausible that the lower prediction accuracy during stationary periods might be 190

due to place cells preferentially replaying non-local trajectories during these periods [36]. 191

A second interesting observation is that the prediction error does not increase at higher 192

speeds (two-sided Welch’s t-test between errors in data points where speed is in range 193

from 0.5 cm/s to 10.5cm/s and errors in data points with speed above 10.5cm/s, 194

t = 0.31, p = 0.76) 195

Sensitivity analysis 196

The accuracy of any neural decoder represents a useful lower bound on the information 197

about the decoded state contained by the recorded neurons. Thus, a biologically 198

relevant question is how such information is distributed among the neurons, across 199

space and time. In short we asked which features of the neuronal activity are the most 200

informative at predicting the animal’s position. To this end we conducted two different 201

types of sensitivity analyses to measure robustness to different types of perturbations. 202

Knockout approach 203

A simple way to estimate the relevance of a specific input in a predictive model is to 204

remove it (to knock out) and observe how the prediction accuracy changes. If the input 205

is removed before training, the model can learn to compensate for the missing 206

information — knockout with retraining. However, if the input is removed after training 207

— knockout without retraining — the model cannot adapt or compensate. 208

Here we used knockout without retraining. The RNN was applied, as before, to 209

predict locations based on a validation dataset in which the activity of a single neuron 210

was set to zero. The knock-out procedure was repeated for each input neuron separately 211

and mean prediction error calculated. Thus we were able to rank neurons by sensitivity 212

- the greater the error increase due to the knocking-out the more crucial the neuron was 213

for the model. 214

The most influential neuron (neuron #55) was visually identified as an inhibitory 215

neuron based on the lack of clear firing fields and high firing rate 5. In someways it is 216

surprising that this neuron was identified as having the greatest influence on the model 217

— prior work suggests that inhibitory cells do not provide much information about 218

self-location. However, the model’s sensitivity to this neuron is likely due to its high 219

firing rate. Neuron #55 had a firing rate 4 times higher than any other neuron, 220

meaning its removal eliminates the largest number of spikes from the analysis. The 221

other 4 most influential neurons appear to typical pyramidal place cells characterized by 222

clear place fields [2]. The knocking out of these top neurons induced a sizable decrease 223

(> 1cm) in the prediction accuracy. 224

For more than half of the neurons knocking them out decreased the prediction 225

accuracy only very slightly (less than the standard deviation of accuracy, calculated over 226

10 realizations of the complete model). Among those less influential neurons we found 227

both putative inhibitory interneurons and pyramidal cells with no clear place fields and 228

a lower than average firing rate. For example, the rate map of the least influential 229

neuron, was characterized by a low firing rate #9 (Fig 5f). As suggested by the most 230

and least influential neurons, importance according to knock-out analysis correlated 231

strongly with firing rate (Spearman’s Rank Order, r = 0.50, pval < 0.001, dof = 61). 232

Gradients with respect to input 233

A different way to investigate which neurons most strongly influence decoding accuracy 234

is a gradient analysis. In this analysis we calculate the derivatives of the loss function 235
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Fig 5. Results of knockout analysis. The firing rate maps of the most (a-e) and
least (f) influential neurons according to the knockout analysis. Colour bar to the right
of each plot indicates the firing rate in Hz. With the complete dataset the mean error
was 12.50± 0.28 cm. When knocking out neurons 55, 26, 41, 17, 23 (the five most
influential) and 9 (the least influential), the mean error increased to 14.72 cm, 13.80 cm,
13.66 cm, 13.50 cm, 13.49 cm and 12.58 cm respectively.

(mean squared prediction error) of the RNN with respect to the inputs (spike counts of 236

neurons) at different time points. By definition these derivatives show how much a 237

small change in a spike count influences the error. This type of sensitivity analysis is 238

quite different from the knock out analysis — knockout sensitivity measures the impact 239

of silencing a neuron, gradient sensitivity measures the impact of a neurons activity 240

deviating from the expected value. 241

For each predicted location we asked how sensitive the model was to each of the 242

input spike counts. Since our RNN input is a set of 100 spike count vectors (length of 243

time series), each of length 63 (number of neurons), this amounts to 63x100 gradients 244

per sample. Considering that the whole data set contains around 4400 samples we 245

obtain a 4400x63x100 cubic array of gradient values. To reveal different aspects of the 246

sensitivity of the model, we can average this array of gradients across three dimensions 247

— samples, neurons, or position in the input sequence. 248

Averaging gradients across all samples and all time windows provided one average 249

gradient value per neuron. Similarly to the knock-out analysis this indicated how 250

relevant the neuron is for the prediction. The two sensitivity measures (knock-out and 251

gradient) were strongly correlated (Spearman’s Rank Order, ρ = 0.57, p << 0.001, 252

dof = 61), but not equivalent. The tests ranked some neurons very differently. For 253

example, the high-firing inhibitory neuron #55 which influences the accuracy most 254

strongly according to knock-out analysis is ranked 47th out of 63 neurons by the 255

gradient sensitivity analysis. Thus illustrating, that despite that fact both measures 256

broadly concur, the gradient and knockout analyses capture different notions of 257

robustness with respect to input perturbations. Interestingly, neither of the two 258

sensitivity measures correlated with the spatial information theoretic measure proposed 259

by Skaggs et al. [37] (Spearman’s Rank Order , gradient-vs-Skaggs: 260

ρ = −0.22, pval = 0.08, dof = 61; knock-vs-Skaggs: ρ = −0.09, p = 0.48, dof = 61) — 261
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likely suggesting that the Skaggs Information Score is not a reliable indication of a 262

neuron’s influence when considered in the context of a population of place cells. 263

In a second step, we investigate how sensitivity with respect to a neuron’s spike 264

count depends on whether the animal is within its place field or not. Place fields are of 265

variable shape and size and, moreover, a small proportion of the recorded cells have no 266

distinct place fields. Also the firing rates and gradient strengths vary greatly between 267

neurons. Thus, we used firing rate as a proxy to indicate proximity of the animal to a 268

given neuron’s place field — firing rate being maximal when the animal is near the 269

centre of a place field, diminishing the further is moves away from that point. Hence 270

after normalizing both the firing rates and the strength of gradients we averaged over all 271

recorded cells (see the Sensitivity measures subsection in Methods). We saw that 272

sensitivity decreases when the firing rate increases (Fig 6). Hence, indicating that at 273

maximal firing rate — near the center of place field, for example — small changes in 274

firing rate are less influential than they are towards the edges of the firing field. Broadly 275

this accords with theoretical considerations which indicate that, in general, neural 276

responses are most informative in the regions of their coding space where the firing rate 277

changes most rapidly for a given change in the encoded variable [38]. In the case of 278

place cells this corresponds to the edges of the place field. Conversely, outside of the 279

place field, where firing rates fall close to 0 Hz, the sensitivity of the RNN to the neuron 280

is again slightly lower (Fig 6). 281

Fig 6. Gradient analysis: sensitivity decreases with activity. (a) Place field of
an example neuron. (b) Sensitivity field - absolute values of gradients in different
locations for the same neuron. (c) Normalized sensitivity as a function of normalized
activity across neurons.

Discussion 282

We have shown that the sequential processing afforded by an artificial recurrent neural 283

network (RNN) provides a flexible methodology able to efficiently decode information 284

from a population of neurons. Moreover, since a RNN decoder is a neural network, it 285

represents a biologically relevant model of how neural information is processed. 286

Specifically, when applied to hippocampal neural data from freely moving rats [2], the 287

network made use of the past neural activity to improve the decoding accuracy of the 288

animals’ positions. In a 2D open field arena (1m x 1m), the RNN decoder was able to 289

infer position with a median error of between 10.3 cm to 13.1 cm for 5 different rats. 290

These results represented a marked improvement over a standard a Bayesian 291

decoder [14,16] which bases its decision solely on spike counts from a single time window 292

centered around the moment of position measurement. Bayesian methods are known to 293

be optimal decoders when using appropriate priors [39]. However, when applied to 294

neural decoding it is difficult to determine these appropriate priors - as a result 295

sub-optimal approximations are commonly used. Hence we propose that RNNs offer a 296

practical methodology to incorporate sequential context without the need to choose or 297
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estimate specific priors over high-dimensional spaces. The improvement in 2D position 298

decoding observed for the RNN was mirrored by similar results from a 1D decoding task 299

using hippocampal recordings made while animals ran on a 6 meter track. Here again, 300

the RNN decoder achieved equal or better results than a standard Bayesian approach. 301

Making use of the past neural activity as contextual information, the RNN seems 302

more robust to noise than Bayesian classifier. In particular when using shorter time 303

windows the spike counts become noisier and the Bayesian model’s prediction accuracy 304

degraded rapidly. In contrast the RNN decoder was more resistant to the variability of 305

spike counts, likely due to its ability to combine information over the complete sequence 306

of past inputs. Similarly, in situations were fewer neurons were available and hence the 307

total amount information was reduced, the RNN exhibited a pronounced advantage over 308

the Bayesian decoder. Equally, in the 1D task the benefit of the RNN was most evident 309

for animal R2217, which had the fewest recorded neurons. Nevertheless notice that 310

fewer recorded neurons does not necessarily mean lower accuracy. As described in 311

Section 2.3.1, the error depends strongly on the amount of training data available 312

(length of recording) and the quality of the cells (amount and location of firing). Taken 313

together these results suggest that RNN decoding of neural data may prove to be 314

particular useful in situations where large populations of neurons are not available or 315

are difficult to stably maintain. 316

Beyond quality and amount of data available, the size of error the RNN decoder 317

maed was also seen to depend on the distance of the animal from the walls and its 318

instantaneous speed. At higher speeds (above 10.5 cm/s) the decoding accuracy does not 319

decrease, but when the animal is immobile (below 0.5 cm/s) the error was significantly 320

higher than when in motion. We hypothesize that while stationary hippocampal activity 321

may reflect non-local activity associated with sharp-wave ripple states [36]. 322

Beyond providing more accurate decoding, the neural network approach also 323

provides a new approach to sensitivity analyses. While knockout-type sensitivity 324

analyses can be applied to both Bayesian and RNN decoders, the latter approach also 325

supports gradient analyses. The two types of sensitivity - knockout and gradient - are 326

correlated, but not identical. By design knockout analyses answers how the system 327

behaves if an input is completely removed, while gradient analyses investigated how the 328

system behaves in response to small perturbations to that input. Having access to the 329

gradients with respect to each spike count makes is possible to pose new questions 330

about the dynamic variability of the information content of individual neurons. 331

Materials and methods 332

Data collection 333

Animals and surgery 334

Eight male Lister Hooded rats were used in this study. All procedures were approved by 335

the UK Home Office, subject to the restrictions and provisions contained in the Animals 336

Scientific Procedures Act of 1986. All rats (330− 400g / 13− 18 weeks old at 337

implantation) received two microdrives, each carrying eight tetrodes of twisted 17µm 338

HM-L coated platinum iridium wire (90% and 10%, respectively; California Fine Wire), 339

targeted to the right CA1 (ML: 2.2mm, AP: 3.8mm posterior to Bregma) and left 340

medial entorhinal cortex (MEC) (ML = 4.5mm, AP = 0.3− 0.7 anterior to the 341

transverse sinus, angled between 8− 10◦). Wires were platinum plated to reduce 342

impedance to 200− 300kΩ at 1kHz. After rats had recovered from surgery they were 343

maintained at 90% of free-feeding weight with ad libitum access to water, and were 344

housed individually on a 12− hr light/dark cycle. MEC data was not analysed for this 345

study. 346
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Recording 347

Screening was performed post-surgically after a 1-week recovery period. An Axona 348

recording system (Axona Ltd., St Albans, UK) was used to acquire the single-units and 349

positional data (for details of the recording system and basic recording protocol see 350

Barry et al(2007). The position and head direction of the animals was inferred using an 351

overhead video camera to record the location of two light-emitting diodes (LEDs) 352

mounted on the animals’ head-stages (50Hz). Tetrodes were gradually advanced in 353

62.5µm steps across days until place cells (CA1) and grid cells (MEC) were identified. 354

Experimental apparatus and protocol 355

The experiment was run during the animals’ light period. First, animals ran on a 356

Z-shaped track, elevated 75cm off the ground with 10cm wide runways. The two 357

parallel tracks of the Z (190 cm each) were connected by a diagonal section (220cm). 358

The entire track was surrounded by plain black curtains with no distal cues. During 359

each track session, animals were required to complete laps on the elevated Z-track. 360

Specifically, the animals were required to run from the start of Arm1 to the end of 361

Arm3, stopping at the track corners and ends in order to receive a food reward. If the 362

animals made a wrong turn at the corners, reward was withheld. Four animals (R2142, 363

R2192, R2198, and R2217) were trained to run on the track for 3 days before recording 364

commenced. For the other animals (R2242, R2335, R2336, R2337), recordings were 365

made from the first day of exposure to the Z-track task. These recordings constitute the 366

dataset we refer to as the 1D decoding task. Not all animals’ recordings were used. 367

Following the track session the same animals completed a 20min random foraging 368

session in a square (1m x 1m) enclosure. Coverage of the enclosure was encouraged by 369

rewarding animals with sweetened rice. These recordings constitute the dataset we refer 370

to as the 2D decoding task. Not all animals’ recordings were used. 371

Decoder based on recurrent neural networks 372

Deep learning is a class of algorithms that learn a hierarchy of representations or 373

transformations of the data that make the problem of classification or regression 374

easier [30, 32]. In particular, deep neural networks, inspired by biological neural circuits, 375

consist of layers of computational units called neurons or nodes. The deepness means 376

that there are multiple ”hidden” layers between the input and output. By tuning the 377

connection weights between its layers a neural network can learn to approximate a 378

function from a set of examples, i.e., pairs of related input and output data. In this 379

work we are interested in training a neural network to decode the rat spatial coordinates 380

from the activity recorded from its hippocampal cells. 381

Whereas feed-forward neural networks learn to predict an output based on a single 382

input, recurrent neural networks (RNNs) can deal with series of inputs and/or 383

outputs [31,32]. In particular, a recurrent network can preserve information from 384

previous inputs by means of feedback connections (loops between its units). Having 385

access to past information can be useful to minimize errors in certain tasks. Such 386

memory of past inputs also means that the order in which the inputs are presented to 387

the network may change the eventual predictions, and thus integrate contextual 388

information over time. A naive implementation of RNNs can only maintain information 389

from a few past inputs, making it possible for the network to detect only immediate 390

trends, but not long timescale dependencies. Advanced realizations of recurrent 391

networks, such as long-short term memory (LSTM) [40] and gated recurrent units 392

(GRU) [41,42] have specific architecture and sets of parameters that control to what 393

extent past activity should be remembered or overwritten by a new input [42]. This 394
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Fig 7. Feature extraction from spiking data and neural network
architecture. (a) Extracting a sequence of spike count vectors from spiking data.
Each subsequent input originates from an overlapping time period, shifted 200 ms
forward in time. (b) The input data that the RNN decoder will use is a sequence of
spike count vectors from these time windows. (c) The network used for decoding
consists of an input layer (size equals number of recorded neurons), two hidden layers
containing 512 long-short term memory (LSTM) units and an output layer of size 2 (x
and y coordinates). The spike count vectors are inserted to the input layer one by one
at each timestep. The network produces a prediction for x and y coordinates only at
the end of the sequence, at t = 100.

makes them capable of integrating knowledge over a longer sequence. Through using 395

past inputs as contextual information these networks have achieved outstanding 396

performance with noisy sequential data such as text and speech. 397

Network architecture 398

A RNN can be made to predict (i) a series of outputs based on a series of inputs, (ii) a 399

series of outputs given only one input, and (iii) one output given a series of inputs. For 400

our location prediction task we are interested in the latter - given hippocampal activity 401

(spike counts) over a longer period of time, we aim to predict one set of spatial 402

coordinates - the animal location. 403

The architecture, illustrated in Fig 7c, of the RNN used in this work consists of an 404

input layer (same size as the number of recorded neurons) followed by two 512-node 405

LSTM layers, and an output layer (2 nodes, one for each spatial coordinate x and y ). 406

Feature extraction 407

The features of neural data used for decoding are the spike counts of all N cells 408

recorded (forming a spike count vector, as shown in Fig 7a and 7b). In particular, the 409

recurrent neural network is presented with a series of 100 of such spike count vectors, 410

corresponding to activity of all cells in 100 overlapping time windows. The shift 411

between consecutive time windows was fixed to 200 ms for all window sizes (this means 412

0% overlap in 200 ms windows, 50% overlap in 400 ms windows, 80% overlap in 1000 ms 413

windows). Across the 100 time steps we consider activity from approximately 20 414

seconds. 415
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Based on this series of 100 spike count vectors the recurrent network was trained to 416

predict the rat’s location in the center of the last (100th) time window. Thus, each 417

sequence of 100 vectors plus the correct location of the rat at the center of the last time 418

window forms one data point for training the RNN. 419

During the training procedure the network aims to minimize an objective function, 420

in our case the mean squared error of the coordinates. The learning is done for 50 421

epochs (full cycles of training data) using RMSprop optimizer (variant of stochastic 422

gradient descent), with a mini-batch size equal to 64. All computations were performed 423

with custom-made scripts using Keras neural network library [43]. 424

Bayesian decoder 425

Spatial decoding was also implemented using a Bayesian framework [44] subject to 426

10-fold cross validation (see also the next subsection). Specifically, for each fold, 90% of 427

the data was used to generate ratemaps for hippocampal neurons - spike and dwell time 428

data were binned into 2 cm square bins, smoothed with a Gaussian kernel (σ=1.5 bins), 429

and rates calculated by dividing spike numbers by dwell time. Note, for the Z-maze 430

only, positional data was linearised before binning. 431

Next, with the remaining 10% of the data, using temporal windows (200 ms to 1000 432

ms) each of which overlapped with its neighbours by half, we calculate the probability 433

of the animal’s presence in each spatial bin given the observed spikes – the posterior 434

probability matrix [14,16]. 435

Specifically during a time window (T) the spikes generated by N place cells was 436

K = (k1, . . . , ki, . . . , kN ), where ki was the number of spikes fired by the i− th cell. 437

The probability of observing K in time T given position (x) was taken as: 438

P (K|x) =
∏

Poisson(ki, Tαi(x)) =

N∏
i=1

(T × αi(x))ki

ki!
× e−Tαi(x) ,

where x indexes the 2 cm spatial bins defined on the Z-track/foraging environment and 439

αi(x) is the firing rate of the i− th place cell at position x, derived from the ratemaps. 440

To compute the probability of the animal’s position given the observed spikes we 441

applied Bayes’ rule, assuming a flat prior for position (P (x)), to give: 442

P (x|K) = R

[
N∏
i=1

αi(x)ki

]
× e−T

∑N
i=1 αi(x) ,

where R is a normalizing constant depending on T and the number of spikes emitted. 443

Note we do not use the historic position of the animals’ to constrain P (x|K) thus the 444

probability estimate in each T is independent of its neighbours. Finally, position was 445

decoded from the posterior probability matrix using a maximum likelihood method - 446

selecting the bin with the highest probability value. Decoding error was then taken as 447

the Euclidean distance between the centre of the decoded bin and the centre of the bin 448

closest to the animal’s true location. 449

Cross validation and averaging of results 450

The reported errors for both Bayesian and RNN approach are measured using a 10-fold 451

cross validation method that divides the D data points between training and validation 452

sets. Due to the overlap between consecutive time windows a random assignment of 453

data points to training and validation sets would imply that for most of the validation 454

data points a highly correlated neighbouring sample can be found in the training set. 455
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This would result in an artificially high validation accuracy that does not actually 456

reflect the model’s ability to generalize to new, unseen data. 457

Instead, in our analysis the first fold in cross validation simply corresponds to 458

leaving out the first 10% of the recording time and training the model on the last 90% 459

of data. The second fold, accordingly, assigns the second tenth of recordings to the 460

validation set, and so on. For RNNs we need to additionally discard 99 samples at each 461

border between training and validation sets. Remind that the input for RNNs is a series 462

of 100 spike count vectors - to avoid any overlap between training and test data we 463

remove validation data points that have at least one shared spike count vector with any 464

training data point. 465

For each fold we train a model on the training set and calculate the error on the 466

validation set. All reported errors are the validation errors - errors that the models 467

make on the one tenth of data that was left out of the training procedure. To increase 468

the reliability of the results, we perform 10-fold cross validation procedure multiple 469

times and report the mean and median of the errors. This is done only for the RNN 470

decoder, because the Bayesian decoder is deterministic and repeating cross-validation 471

procedure multiple times is not necessary. 472

Analysis of decoding results 473

Quantifying prediction errors 474

When decoding rat locations in the 2D arena, prediction errors in the animal position 475

were quantified by the mean Euclidean distance (MED) between the predicted and true 476

positions: 477

MED =

N∑
i=1

(
√

(ŷi − yi)2 + (x̂i − xi)2)

N
,

where ŷ and x̂ are the locations predicted by the decoder, y and x are the true 478

locations and N is the number of data points. 479

The training procedure of recurrent neural networks is stochastic and always ends up 480

with slightly different solutions. We repeat the 10-fold cross-validation 10 times, giving 481

us 10 independent predictions for each data point. We report the average of errors over 482

these 10 realizations (and not the error of the averaged prediction). 483

For evaluating the x-coordinate (y-coordinate) errors only the x (y) component of 484

the positions were used in the above formula: 485

MEDx =

N∑
i=1

(
√

(x̂i − xi)2)

N
=

N∑
i=1

|x̂i − xi|

N
,

In an additional experiment, we also decode the rat locations on a 600 cm long 486

Z-shaped track. The position of the rat along the track is considered as a 1D coordinate 487

ranging from 0 in one end of the track to 600 in the other end of the Z-shape. To obtain 488

these 1D coordinates the actual locations extracted from camera images are projected 489

to the nearest point on a Z-shaped ideal trajectory. The prediction error of the model is 490

quantified by absolute distance between the predicted and true position along this 1D 491

coordinate. 492

Sensitivity measures 493

In knock-out analysis we set the activity of a neuron to zero in all validation data points 494

and then calculate the validation errors. The activity is not annulled during training of 495
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the model, so the system can not learn to compensate or adapt. We repeat this 496

knock-out procedure for each neuron one by one. We compare how much the prediction 497

error increased when different neurons were knocked out. 498

The gradient of the loss function with respect to inputs was calculated using 499

back-propagation through time [45], similarly to how gradients with respect to weights 500

are found. Indeed, for updating the connection weights of the network at training time, 501

the algorithm needs to calculate the gradients of the loss function with respect to the 502

weights [30]. These gradients tell us how a small change in a particular weight would 503

influence the final output error. In here we ask a similar question - how much would a 504

small deviation in a certain input change the final loss. Important is to notice that 505

when talking about sensitivity we disregard the sign of the gradient, in all results we use 506

the absolute values (magnitudes) of gradients. We compute gradient strengths for each 507

validation set data point and separately for each neuron’s spike count for each position 508

in the time series of T inputs (T = 100). This results in a D×N × T matrix of gradient 509

values. To draw further conclusions from the gradient values, we need to average or 510

manipulate this 3D matrix along different dimensions. For example, when calculating 511

the neurons that the model is most sensitive to, we need to average across all data 512

points and all time steps, so we are left with one value per neuron. 513

When investigating the relationship between sensitivity and location on the place 514

field (on Fig 6c), we also need to normalize the spike counts and gradient magnitudes of 515

different neurons, so that we could aggregate them. To do this one would usually divide 516

the spike count with the maximum value, resulting in measures between 0 and 1 for all 517

cells. In the case or low-firing neurons, however, the noisiness of the data means that 518

the maximum value can be an outlier (we can have maximum count of 4, whereas no 519

other value is above 2). We therefore choose to divide the spike counts with the 99th 520

percentile of the spike count values instead. A few values end up being above 1, but the 521

normalized value distributions of low and high firing neurons look more similar. We do 522

a similar 99-th percentile normalization on the absolute values of gradients. For each 523

normalized firing rate we have one corresponding normalized gradient size. We can then 524

plot how the normalized gradient size depends on normalized firing rate. 525

Supporting information 526

S1 Text. Temporal gradient analysis. A third way to investigate the gradients is 527

to average only across the samples. We thus obtain an averaged gradient for each 528

neuron at each different position in the input sequence of 100 time windows. These 529

averages reveal, for example, how sensitive the model is to changes in spike counts of 530

the same neuron at different points of time. Unfortunately recurrent network 531

architecture and training procedures favour information contained in more recent inputs 532

(due to vanishing gradients further back in time). We therefore judge that it is not fair 533

to draw conclusions from comparing sensitivity to spike counts at different positions in 534

the sequence - inputs in the later time steps would show up as more important not 535

necessarily due to information content but due to the algorithm we used. It is however 536

fair to compare the contributions of different neurons at the same time step. We propose 537

to compare the model’s sensitivity to a certain spike count with average of sensitivity 538

across all neurons at the same point of the temporal context sequence. Intuitively such 539

gradient analysis reveals if neuron N’s activity at time window T within the temporal 540

context, was more informative than the activity of other neurons at that time point. 541

This comparison is not distorted by the network architecture, because inputs from 542

different neurons are treated symmetrically (order of neurons could be changed) by the 543

network. No bias exists with respect to either particular neurons or data samples. 544

As a summary of the analysis described above, Fig 2 shows the normalized gradients 545
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Fig 1. S1 Fig. Mean prediction error for different instantaneous movement
speeds. Movement speed is based on the distance covered in 200 ms. The first bar is
the average over the errors for speeds in range [0, 0.5] cm/s, the second for (0.5, 1.5]
cm/s, etc. The error is highest when the rat is not moving or moving very slowly.
Notice that speeds in the range of 1-2 cm/s can also be the results of head movements.
At higher speeds the exact velocity does not seem to influence accuracy. Note that the
bars do not contain the same amount of data points. Apparent changes in the mean
error at higher velocities can be attributed to noise as we have less data points there.

of several neurons at different positions within the temporal context. The analysis 546

reveals different profiles of relative sensitivity within the temporal context. In 547

particular, we note that several neurons have a peak in their normalized sensitivity 548

around one second before the last time window for which the animal position is 549

predicted. Nevertheless, our time windows last 1400ms and therefore the temporal 550

resolution is very low. We restrain ourselves from drawing conclusions from this analysis 551

due to lack of temporal precision. We believe that when using smaller, non-overlapping 552

time windows, this type of investigation can reveal interesting temporal aspects of 553

information processing in the brain. 554

Fig 2. Gradient analysis. a-e) Temporal profiles of relative importance for 5
selected neurons among the highest contributing neurons according to gradient analysis.
Notice that the profiles peak at different time steps. f) Temporal profile of the least
important neuron according to gradient analysis.
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41. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:14091259. 2014;.

42. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:14123555. 2014;.

43. Chollet F, et al.. Keras; 2015. https://github.com/fchollet/keras.
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