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The unitary firing fields of hippocampal place cells are
commonly assumed to be generated by input from
entorhinal grid cell modules with differing spatial scales.
Here, we review recent research that brings this assump-
tion into doubt. Instead, we propose that place cell spatial
firing patterns are determined by environmental sensory
inputs, including those representing the distance and
direction to environmental boundaries, while grid cells
provide a complementary self-motion related input that
contributes to maintaining place cell firing. In this view,
grid and place cell firing patterns are not successive
stages of a processing hierarchy, but complementary
and interacting representations that work in combination
to support the reliable coding of large-scale space.

Spatially modulated firing in the hippocampal
formation
The medial temporal lobes, and hippocampus in particular,
have long been implicated in episodic and spatial memory
function in humans and animals respectively [1–3]. Early
in vivo electrophysiology studies, seeking to identify the
behavioural or cognitive correlates of neural activity in this
region, established that the firing of principal cells in
rodent hippocampus is primarily determined by the loca-
tion of the animal [4]. These ‘place cells’ are typically active
in a single area within a given environment – the corre-
sponding ‘place field’ (Figure 1A) – and have been hypothe-
sised to support a cognitive map of known locations in
rodents, and episodic memory in humans [3]. Decades of
subsequent research have attempted to establish the sen-
sory stimuli and neural mechanisms that support their
rapidly expressed, highly specific and spatially stable fir-
ing patterns. During this time, several other spatially
responsive cell types have been identified in the hippocam-
pal formation (Box 1). The next to be discovered were head
direction cells, which encode the head direction of the
animal in the horizontal plane independently of location
[5–7]. More recently, grid cells – which exhibit periodic
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spatial firing fields that form a triangular lattice covering
all environments visited by an animal (Figure 1B) [8] –
were identified in the medial entorhinal cortex (mEC), a
principal input to the hippocampus (Box 2). Finally, bound-
ary vector/border cells (hereafter referred to as boundary
cells) – which fire at a specific distance and direction from
environmental boundaries (Figure 1C) – were identified in
subiculum [9,10], parasubiculum [11], and mEC [11,12].

Following the discovery of grid cells, several theoretical
studies established that place fields could be generated by
combining grid firing patterns with different spatial scales
[13–24], and grid cell input has subsequently come to be
considered the primary determinant of place cell firing (e.g.,
[25]). However, recent studies have challenged this view by
demonstrating that place field firing patterns are largely
unaffected by an absence of stable grid cell activity. Here, we
briefly review the properties of spatially responsive cells in
the hippocampal formation, describe theoretical models of
the grid cell to place cell transformation, evaluate the
evidence for and against these models, and present an
alternative view. In this view, place field firing patterns
are primarily determined by environmental sensory inputs,
including boundary cells (Box 3) [26,27] to encode locations
within specific spatial contexts, whereas grid cells provide a
highly efficient and context-independent spatial metric for
path integration and vector navigation. Thus, grid and place
cells do not represent successive stages of a processing
hierarchy, but rather provide complementary and interact-
ing representations that work in combination to support the
reliable coding of large-scale space.

Place cells
Place cells, most often studied in rats, are typically com-
plex spiking pyramidal cells of the CA3 and CA1 hippo-
campal subfields [4,28]. CA1 and CA3 place cells generally
exhibit a single place field, but sometimes several in larger
environments [28,29]. In addition, granule cells in the
dentate gyrus (DG) can exhibit several, smaller place fields
[30]. Place fields are established rapidly in a novel envir-
onment [31–33] and remain stable between visits to an
environment [34] while slowly evolving over longer time-
scales [35,36]. Place cells are present throughout the dorso-
ventral axis of the hippocampus, but place fields are larger
towards the ventral pole [37–39]. Place cell activity is
typically observed during translational movement, which
is associated with 5–10 Hz theta oscillations in the local
field potential (LFP) [40]. During these periods, place cells
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Figure 1. Spatially modulated firing in the hippocampal formation. (A) Firing rate maps for three simultaneously recorded CA1 place cells (adapted from [68]). (B) Firing rate

maps for two simultaneously recorded grid cells in dorsal medial entorhinal cortex (mEC) (adapted from [68]). (C) Putative tuning curves (left panel) and firing rate maps for

two subicular boundary cells recorded in multiple environments, illustrating the constant relationship between their firing fields and local borders within each environment

(adapted from [10]). Superscript indicates peak firing rate.

Box 1. Other spatially modulated cell types of the

hippocampal formation

In addition to place and grid cells, the hippocampal formation

contains several other spatially modulated cell types, including head

direction cells [5–7], boundary cells [9–12], and cells that encode

object locations [99,100].

Head direction cells, initially identified in the subiculum but

subsequently throughout the Papez circuit, encode the animal’s

head direction in the horizontal plane, independent of location

(Figure 4A) [5,6]. Head direction cells maintain their firing orienta-

tion in the dark, suggesting that they can be updated on the basis of

self-motion [7]; and rotate coherently with grid and place cells when

distal visual stimuli are moved, suggesting that they become

coupled to sensory input with experience [53,62].

Boundary cells of the subiculum [9,10], parasubiculum [11], and

mEC [11,12] fire whenever a boundary is at a particular distance and

direction from the current location of the animal, independent of

head direction, and exhibit a second firing field at the same distance

and direction to additional boundaries placed within a familiar

environment (Figure 1C) [9–11]. These cells also maintain their firing

patterns in darkness and rotate with polarising visual stimuli,

coherently with head direction and grid cells [10,11].

Neurons in the lEC typically fire in response to non-spatial cues

such as odour [101], but rarely show stable spatial tuning in an open

field [102]. However, they can encode the relative distance and

direction to the current or previous location of specific objects

within an environment, and provide an equivalent level of spatial

information to cells in mEC under these conditions (Figure 4B)

[99,100].
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exhibit theta phase precession – that is, their firing phase
relative to theta is negatively correlated with the distance
travelled through the place field [41,42].

What factors are known to modulate place cell firing?
First, evidence suggests that place fields are controlled by
local boundaries, as firing often occurs at fixed distances
from boundaries in one or more allocentric directions across
geometrically deformed versions of an environment
(Figure 2A) [26,27,43,44], and secondary firing fields often
develop in the same position relative to a new boundary
placed into the environment (Figure 2B) [27,35]. Second, it is
believed that place cells receive inputs reflecting self-motion
[44–49]. For example, when environmental and self-motion
cues are put in conflict, firing field locations of a significant
proportion of place cells are specifically influenced by move-
ment related information [26,43–45]. Third, place cell
responses are oriented to distal visual cues. For example,
if a polarising visual cue in a circular environment is rotated,
then the positions of place fields within that environment
rotate correspondingly (Figure 2C) [50–52], coherent with
head direction cell responses [53]. Proximal sensory cues can
also exert some control over place cell firing [50,53,54].
Finally, not all place cells are active in all environments.
Although approximately 90% of principal cells in the dorsal
hippocampus can exhibit place fields, only 15–50% do so in
any given environment [32,43,55], and there appears to be
137



Box 2. Anatomy of the hippocampal formation

The hippocampal formation (HF) is composed of the dentate gyrus

(DG) and cornu ammonis (CA) subfields, often referred to as the

hippocampus proper; subiculum, pre- and parasubiculum; and the

entorhinal cortex (EC), which is generally subdivided into medial and

lateral subregions on the basis of cell morphology, connectivity

patterns, and electrophysiological characteristics (Figure I)

[60,61,102]. Subcortical structures, including the medial septum,

anterior thalamus, and mammillary bodies, project to all subfields

of the HF via the fimbria–fornix fibre bundle [60,61]. In addition,

medial and lateral EC receives neocortical input from postrhinal and

perirhinal cortices, respectively, and send projections to the hippo-

campus via the perforant path, with layer II cells primarily terminating

in DG and CA3 and layer III cells in CA1 and subiculum [60,61]. Pre-

and parasubiculum are reciprocally connected, the former projecting

primarily to layer III of the mEC and the latter projecting to layer II of

both mEC and lEC, as well as the DG [60,61,104]. Within the

hippocampus, connectivity is traditionally characterised as a unidir-

ectional polysynaptic loop consisting of mossy fibre projections from

DG to CA3 and Schaffer collateral projections from CA3 to CA1

[60,61]. CA1 sends output projections to the deeper layers of EC, both

directly and via the subiculum; the subiculum also sends output

projections to pre- and parasubiculum; and there are tentative reports

of a back-projection from subiculum to CA1, although it is not clear if

this is excitatory or inhibitory in nature [60,61,103,104].
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Figure I. Anatomy of the hippocampal formation. Subcortical structures –

including the medial septum, mammillary bodies, and anterior thalamus –

project to all subfields of the hippocampal formation, most notably via the

fimbria/fornix fibre bundle. Post- and perirhinal cortices provide neocortical

input to medial entorhinal cortex (mEC) and lateral entorhinal cortex (lEC),

respectively. The presubiculum projects to mEC, whereas the parasubiculum

projects to mEC, lEC, and dentate gyrus (DG). Both mEC and lEC provide input to

the DG, CA3, and CA1 subfields of the hippocampus proper via the perforant

path. Within the hippocampus proper, DG sends mossy fibre projections to CA3,

CA3 sends Schaffer collateral projections to CA1, and CA1 sends output

projections to the deep layers of mEC and lEC both directly and via the

subiculum.
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no relationship between the subset of cells that are active in
different environments and the location of their firing fields
[50,51,55]. Minor manipulations of environmental features
may modulate the firing rate of active place cells, particu-
larly in CA3 (‘rate remapping’), whereas larger manipula-
tions of the environment can change the entire ensemble of
active place cells and their firing locations (‘global remap-
ping’; Figure 2D) [56–59].

Grid cells
A principal neocortical input to the hippocampus arises in
the superficial layers of mEC [60,61], where grid cells are
the most numerous spatially modulated cell type [8,62].
Grid cells exhibit periodic spatial receptive fields that
form a remarkably regular triangular lattice covering
all environments visited by the animal [8]. Grid cells have
also been identified in the deeper layers of mEC, where
their firing rates are often modulated by head direction
[62], and in pre- and parasubiculum [63]. Grid cells in the
superficial layers of mEC exhibit theta phase precession
that is independent of the hippocampus [64]. Like place
cells, the scale of the grid firing pattern increases along
the dorso-ventral axis of mEC [8], but this increase occurs
in discrete steps, with grid cells at each discrete scale
appearing to exist in independent modules (Figure 3A)
[65,66]. The scale, relative orientation, and offset of grid
138
firing patterns within each module are generally con-
served across environments [67], aside from temporary
expansion when encountering a novel environment
(Figure 3B) [68], and their firing patterns are maintained
in the dark [8]. This has led to the suggestion that grid
cells perform path integration, updating their firing
patterns on the basis of self-motion [69]. However, grid
firing patterns also remain stable between visits to an
environment [8,67], are oriented by distal cues [8], and
parametrically rescale when a familiar environment is
deformed [65], suggesting that they become attached to
environmental sensory information with experience.
Finally, the relative spatial phase and orientation of grid
cell modules can shift between environments, concomi-
tant with global remapping in place cells [67].

Grid cell to place cell models
Following the discovery of grid cells, multiple theoreti-
cal models demonstrated how input from grid modules of
two or more spatial scales could be combined to generate
place fields through an effective Fourier synthesis [13–24].
These models use hardwired synaptic weights [16,17], a
heterosynaptic Hebbian learning rule [15,18,20–22], and/
or competitive network interactions [14,15,18,19,22–24] to
set the effective strength of grid cell inputs to decline
with their spatial offset from the output place field [70].



Box 3. The boundary vector cell model of place cell firing

The ‘boundary vector cell’ (BVC) model of place cell firing arose from

the observation that place cell firing locations tend to maintain fixed

distances to one or more boundaries following changes to the

geometry of a familiar environment [26] (Figure 2A). These properties

were hypothesised to reflect input from BVCs – putative cells that

respond to the presence of an environmental boundary at a preferred

distance and allocentric direction from the animal [27,107] (Figure 1C].

Changes to place cell firing patterns following geometric manipula-

tions of a familiar environment can then be predicted as a thresholded

sum of a small number of BVC inputs (Figure I). For example, many

place cells develop a secondary firing field with the same spatial

relationship to a novel boundary that their initial firing field had to the

original environmental boundaries (Figure 2B) [9,27]. Gradual

changes to these firing patterns [35,108] can also be explained by

the action of an unsupervised learning rule on the synaptic

connections from BVCs to place cells [109].

Several years after the development of this model, initial evidence

for the existence of cells with the requisite spatial modulation was

obtained from the subiculum [9], and the properties of these

boundary vector or border cells (referred to here as boundary cells,

for simplicity) have subsequently been more fully characterised in the

medial entorhinal cortex [11,12], parasubiculum [11], and subiculum

[10]. Boundary cell receptive fields [10,11], similarly to those of place

[53] and grid cells [62], rotate coherently with head direction cell

tuning curves, suggesting that the latter provide global orientation

input for each of these spatially selective cell types [10]. Moreover,

boundary cells continue to fire at a fixed distance and allocentric

direction from boundaries across very different environments, while

simultaneously recorded place cells exhibit global remapping [10],

suggesting that additional contextual inputs must also influence place

cell firing patterns.

Boundary vector cells

Place cell
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Figure I. The boundary vector cell (BVC) model of place cell firing. Place cell firing

patterns can be modelled as the thresholded sum of BVC inputs, which are tuned to

respond to the presence of environmental boundaries at a fixed distance and

allocentric direction from the animal. Putative firing rate maps are shown for two

BVC inputs and a single place field output in four environments (adapted from [27]).
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Assuming that activity in the grid cell network is driven
by movement related input [69], these models can then
account for the update of place cell firing by self-motion.
Grid cell to place cell models can produce either single or
multiple place fields, although the secondary fields often
exhibit six fold symmetry, in contrast to empirical data
[14,16,22,24]. This issue is particularly common when all
grid inputs share a single orientation [16], and it is
known that the orientation of grid modules within a
single animal tend to be clustered [65,66]. However, more
restricted place field firing can be generated by introdu-
cing some variation in firing rate between the receptive
fields of each grid cell [15,24], in line with experimental
data [8]. Finally, making independent changes to
the orientation and/or spatial phase of input from each
grid module [14,23], or incorporating a ‘gating’ input
representing abstract contextual signals [17,24], can
account for both rate and global remapping of output
place field responses.

Evidence supporting grid cell to place cell models
Several strands of empirical evidence have been offered in
favour of the hypothesis that grid firing patterns are the
main determinant of place cell firing. First, grid cells are the
most numerous spatially modulated cell type in the super-
ficial layers of entorhinal cortex [8,62], the principal neo-
cortical input to the hippocampus [60,61]. Recent combined
optogenetic–electrophysiology experiments confirmed that
a significant proportion of excitatory projections to place
cells that arise in mEC come from grid cells, along with
several other spatial and non-spatial cell types [71]. Place
fields become less spatial towards proximal CA1, where
mEC inputs are fewer [72], and both grid [65,66] and place
fields [37–39] are larger towards the ventral pole, consistent
with grid cell to place cell models that incorporate topo-
graphic projections along the dorso-ventral axis [16,24].
Moreover, dorsal hippocampal place fields decrease in size
after lesions of ventral and intermediate EC [73], consistent
with the proposed convergence of input from grid cells
covering a range of scales [16,24], although conflicting
results have been reported [74].

Second, evidence in favour of a functional projection
from grid cells to place cells during navigation comes from
the suggestion that place cell phase precession relies on
extra-hippocampal mechanisms [75,76]. Silencing CA1 pyr-
amidal cells and interneurons for one or more theta cycles
while the animal continues to navigate freely does not
prevent place cells discharging at the appropriate theta
phase when firing activity resumes, consistent with hippo-
campal phase precession arising from external inputs [75].
Moreover, bilateral mEC lesions have been shown to abolish
phase precession in CA1 place cells without eliminating
spatially selective firing [76]. The fact that grid cells
represent the only known cell type projecting to the hip-
pocampus which exhibit theta phase coding [64] makes
them most likely to account for the place cell temporal
code. However, non-spatially modulated cells whose theta
firing frequency is modulated by movement velocity have
also been identified in the septo-hippocampal circuit [77],
and these would be sufficient to produce both phase
139
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Figure 2. Factors controlling place field firing. (A) Place field deformation when a

familiar environment is reshaped, illustrating a constant relationship between

place cell firing and the allocentric distance to one or more environmental

boundaries (adapted from [26]). (B) Appearance of a second place field when a

novel boundary is placed in a familiar environment, illustrating how local

boundaries control place cell firing locations (adapted from [9]). (C) Rotation of

place fields with a distal visual cue (marked by a black line) in an otherwise

symmetrical environment (reproduced, with permission, from [53]). (D) Rate and

global remapping in place cells. Cell 1: a comparison of the left and right panels

illustrates rate remapping, where place cell firing rates change with contextual

cues (i.e., vanilla or lemon odour); whereas a comparison of the top and bottom

panels illustrates global remapping, where place cells change their firing locations

between different environments (i.e., black or white walls) (adapted from [57]).

Cells 2,3: further examples of global remapping in place cell responses, where cells

cease firing or change their firing locations between different environments

(adapted from [59]).
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precession [78] and arbitrary spatial firing patterns [77] in
target neurons.

Third, removing input from CA3 does not eliminate CA1
place cell responses in novel or familiar environments
[79,80], although firing field size is increased and spatial
information content reduced [80], suggesting that place
cell firing can be established and maintained by direct
entorhinal input. However, removing inputs from mEC
to CA1 also fails to eliminate place cell responses in novel
or familiar environments, although it does cause a reduc-
tion in the frequency of pyramidal cells exhibiting place
fields [25,81], an increase in firing field size [25,74,76],
and a reduction in spatial information content ([76], but
see [73]). Similarly, removing input from subcortical
structures [81] or pre- and parasubiculum [82] reduces
the frequency and spatial information content of place
fields in familiar environments, but does not eliminate
place cell responses. Hence, it appears that input from
140
CA3, mEC, subcortical structures, pre- and parasubicu-
lum all contribute to the generation of sharp CA1 place
fields.

Finally, in accordance with theoretical models [14,23],
experimental studies have demonstrated that global
remapping of place cell firing is accompanied by shifts in
the spatial phase and/or orientation of grid cell modules
relative to the environment [67]. However, this relation-
ship is correlative rather than causal, and does not indicate
whether grid module shifts drive changes in place field
firing or vice versa. Furthermore, rate remapping of place
cell responses is not associated with changes in grid cell
firing rates or grid field shifts [67], but is compromised by
lesion of the lateral entorhinal cortex (lEC) [83], consistent
with models which suggest that contextual input from lEC
gates spatially modulated input from mEC to modulate
place cell firing rates [17,24]. In accordance with this
hypothesis, recent intracellular recordings in vivo demon-
strate that place field responses can be unmasked by tonic
depolarisation of a principal cell that previously exhibited
no spatially modulated subthreshold membrane potential
fluctuations during navigation, possibly mimicking the
effects of contextual input from lEC [84].

Evidence against grid cell to place cell models
Further recent research has challenged the view that grid
cell responses give rise to place cell firing by demonstrating
that hippocampal place fields are largely unaffected by an
absence of effective input from the grid cell network. First,
significant proportions of stable, adult-like place fields are
present when pre-weanling rats first leave the nest and
actively navigate, whereas significant proportions of stable
grid firing patterns do not appear until several days later,
suggesting that place cell responses are initially estab-
lished in the absence of grid like firing [85,86]. Although
some mEC cells do exhibit spatially selective firing earlier
in the developmental timeline, their firing fields lack suffi-
cient inter-trial stability to account for the stable place
fields that are observed ([86], but see [85]). Interestingly,
adult-like head direction cell activity is present from the
very first excursion outside of the nest [85,86], and adult-
like boundary cell activity develops much earlier than grid
cell responses [87,88].

Second, both grid scale and grid firing field size
increase significantly upon exposure to a novel environ-
ment, and grid firing patterns remain expanded for several
hours as the environment becomes familiar [68].
Conversely, place field location rapidly becomes stable in
a novel environment [31–33], and the temporary increase
in place field size returns to baseline with a much faster
time course [68]. This suggests that spatially modulated
input from grid cells continues to change long after stable
place cell responses have been established.

Third, inactivation of the medial septum reduces theta
rhythmicity and eliminates the spatial periodicity of grid
cell firing with little effect on the maintenance of place
fields in familiar environments [89] or the formation of
place fields in novel environments [90], despite a signifi-
cant reduction in place cell firing rates [89]. Although
medial septum inactivation does not completely disrupt
grid cell spatial selectivity, and the inter-trial stability of
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Figure 3. Properties of grid cell firing. (A) The spatial scale of grid firing fields increases in discrete steps along the dorso-ventral axis of the medial entorhinal cortex (mEC).

Spike rasters for two grid cells recorded from the same animal at different positions along the dorso-ventral axis of mEC are shown alongside the scale of all grid cells

recorded in six rats, illustrating the discrete nature of grid scale increases (adapted from [65]). (B) Grid cell firing patterns expand in novel environments. Spike rasters for a

single grid cell recorded over several days illustrate that firing field size and spatial scale increase upon exposure to a novel environment and then progressively decrease

with experience until they return to their original scale, observed in familiar environments (adapted from [68]).
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place fields is significantly reduced, place field locations
are significantly better preserved than those of the
remaining grid cell firing fields, suggesting that they cannot
be wholly accounted for by grid cell inputs (Box 4) [89].
Interestingly, this reduction in theta rhythmicity has little
effect on head direction cells, the directional component
of conjunctive cells, or the firing patterns of boundary cells
[89,91].

Finally, it has been demonstrated that both principal
cell and interneuron activity in mEC peaks shortly after
principal cell activity in the hippocampus during theta-
associated behaviour, making a causal contribution unli-
kely [92]. However, it is important to note that this ana-
lysis did not distinguish between cells in mEC or
hippocampus on the basis of their spatial firing patterns.
Furthermore, the firing probability of principal cells in
mEC layer II with an instantaneous rate of �40 Hz, which
may be most effective in driving target neurons, does peak
shortly before that in their hippocampal afferents [92].

An alternative model of place cell firing
The evidence discussed above indicates that place fields
can be both established and maintained in the absence of
stable input from the grid cell network [118]. What then
can account for the formation of highly selective, spatially
stable place field firing, and what contribution might be
made by grid cells?
We suggest that place cell firing is primarily driven by
environmental sensory inputs from boundary cells
[9,10,26,27,35] in mEC (Box 3) [11,12,89]. This hypothesis
is supported by several aspects of the empirical data. First,
the position of place fields in altered environments can be
strongly predicted by their position relative to previous
boundaries [26,27,35], and additional place fields often
develop in the same relative position to an additional
boundary placed in a familiar environment [26,27], con-
sistent with input from boundary cells [9,10]. Second,
although boundary cells constitute a smaller proportion
of mEC principal neurons than grid cells, they appear to be
at least as likely to project to principal neurons in the
hippocampus [71]. Third, boundary cells appear earlier in
the developmental timeline, making a causal contribution
to stable place cell responses more likely [87,88]. Fourth,
their firing patterns are rapidly expressed and stable in
novel environments, in which grids gradually contract
[10,68]. Finally, they are not affected by a reduction in
theta rhythmicity, potentially accounting for the persis-
tence of place field responses following inactivation of the
medial septum [89,91].

This hypothesis does not preclude a contribution of grid
cell activity to place cell firing patterns, however. Grid cells
are the most common spatially modulated cell type in mEC
[8,62], which is the most significant neocortical input to
the hippocampus [60,61], and therefore highly likely to
141



(A) (B)

10.3 Hz

18.6 Hz

TRENDS in Neurosciences 

Figure 4. Other spatially receptive cell types of the hippocampal formation. (A) Head

direction cells of the anterior thalamus. Head direction cell firing is not spatially

modulated but strongly dependent on the animal’s head direction in the horizontal

plane. Top row: polar plots illustrate the directionally tuned activity of a single head

direction cell recorded in a familiar environment, and how the preferred direction of

that cell rotates with a distal visual cue (marked by a black line). Bottom rows:

simultaneously recorded place cell responses illustrate how place field firing

locations rotate coherently with the preferred orientation of head direction cells

(reproduced, with permission, from [53]). (B) Object and object trace cells of the

lateral entorhinal cortex. Top row: three recording sessions were performed in a

familiar environment, with an object (marked by the blue dot) placed into the

environment for the second session but removed for the third. Middle row: firing rate

map of a typical object cell, which encodes the location of the object when it is

present within the environment. Bottom row: firing rate map of a typical object trace

cell, which encodes the previous position of objects that are no longer present within

the environment (adapted, with permission, from [100]).
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influence place cell responses. Existing data suggest that
self-motion information provided by grid cells [13,69] could
help to maintain the spatial stability of place cell firing
[89,90], although direct evidence is so far lacking. The
limited evidence for boundary cells that fire at a distance
from environmental borders [10–12] might suggest that
grid cell inputs are particularly important for maintaining
place fields towards the centre of an open environment.
This would be consistent with developmental data [88] and
Box 4. Outstanding questions

� Can analysis of the relative spike timing in different spatially

modulated cell types during movement related theta elucidate the

causal relationships between boundary, grid, and place cell firing

[92]? Do these temporal relationships change according to beha-

vioural requirements – for example, might grid cell input to place

cells be more important when environmental sensory cues are

reduced [118], or differ between novel and familiar environments?

� What is the relationship between grid and boundary cell firing in

mEC [8,11,12,62], subiculum [9,10], and pre- and parasubiculum

[11,63]? Do boundary cells stabilise grid cell firing patterns [11], or

do they only interact via place cells [110]? Are grid and boundary

cell firing patterns in some regions inherited from elsewhere, or do

they arise independently in each region?

� What explains the stable differences in firing rate between the

spatial receptive fields of a grid cell [8]? If the grid cell network

represents a context-independent spatial metric [94,106], then there

is no clear role for this firing rate heterogeneity. However, if grid cell

in-field firing rates are controlled by environmental sensory cues,

they may contribute to variations in place cell firing that encode

local attributes of space [42]. Alternatively, they might represent a

deviation from ‘pure’ grid like firing that reflects ‘imperfect’

combinations of underlying periodic inputs [93,111,112].

� What inputs are necessary for the global remapping of place cell

responses? It has been shown that lEC input makes some contribu-

tion to remapping [83], but are the expansion [68], shift, and/or

rotation [67] of grid firing patterns in a novel environment also
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with the greater influence of proximal versus distal bound-
aries on place cell firing fields [26,43,52]. However, the
distribution of preferred response distances for mEC
boundary cells has not yet been characterised, and several
examples of cells that respond at larger distances have also
been reported (see ‘spatial non-grid cells’ in the supporting
online material of [89]).

It also seems likely that the theta phase precession of
place cell firing is inherited from grid cell inputs ([75,76],
but see [77]), suggesting that temporal coding in the grid
cell population might be associated with path integration
mechanisms, consistent with several theoretical models
[13,77,78,93]. Moreover, grid firing patterns represent a
constant spatial metric that could, in principle, allow a
translational vector between locations to be extracted and
used to support novel shortcutting over large distances
[94,95]. This is not true of place cell firing patterns, which
can directly support navigation over distances up to the
scale of the largest place fields [96], but require an addi-
tional, potentially slow, learning mechanism over larger
distances [97]. Finally, grid scale expansion in novel envir-
onments [68], along with the rotation and shift of grid firing
patterns between familiar environments [67], may help to
drive global remapping.

The data discussed above also indicate that input from
other spatially receptive cells in the hippocampal forma-
tion likely contributes to place cell firing. First, the influ-
ence of proximal sensory cues [52,54,98] could reflect input
from spatially modulated lEC neurons [99,100]. Further-
more, non-spatial or ‘contextual’ inputs from lEC [101,102]
could modulate boundary cell firing to account for place cell
remapping in geometrically similar environments [35,56–
59], consistent with lesion data [83] and theoretical models
(Box 4) [17,24]. Second, the coherent rotation of place, grid,
and boundary cell receptive fields with those of simulta-
neously recorded head direction cells might indicate that
necessary? This could be explored using selective lesions, inactiva-

tion of the medial septum to eliminate grid cell responses without

affecting place cell firing patterns, or optogenetic techniques.

� What are the relative contributions of environmental and self-

motion information to place cell firing? Do place cells form a pre-

configured chart driven by self-motion (via grid cells [69]) which

then becomes associated to sensory input in a particular

environment [113]? Or are place fields initially determined by

sensory inputs (via boundary cells [27]) and then become

associated to grid cells as an environment becomes familiar

[68,110]? Or are place fields near to environmental boundaries

driven by boundary cells, and those far from the boundary more

reliant on grid cells [88]?

� Which aspects of medial septal inactivation are responsible for the

observed effects on place and grid cell firing? The oscillatory

interference model [13,77,78,93] suggests that the loss of grid cell

spatial periodicity and stability reflects the disruption of theta

rhythmicity, consistent with the correlation between these variables

[89,91]. By contrast, the reduction of place field stability [89],

especially in novel environments [90], resembles the effects of

impairing synaptic plasticity [114,115], suggesting that they reflect

the disruption of cholinergic input to the hippocampal formation,

which impairs synaptic plasticity [116,117]. These possibilities

could be dissociated by optogenetic or pharmacological manipula-

tions that specifically target cholinergic neurons or inhibitory theta

cells in the medial septum.
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the latter provide global orientation information for all
spatially receptive neurons in the hippocampal formation
[10,11,53,62,98].

Some empirical data still present a challenge to the
hypothesis that boundary and grid cells make a causal
contribution to generating place field firing patterns, how-
ever. First, the theta phase of peak activity in the place cell
population appears to precede that in mEC principal neu-
rons, which include boundary and grid cells, although the
former are less numerous and therefore make a smaller
contribution to the pooled spike timing data (Box 4) [92].
Second, place fields can be established and maintained
following mEC lesion, which presumably eliminates the
majority of both boundary and grid cell inputs
[25,73,76,81]. In these circumstances, inputs from bound-
ary and/or grid cells in pre- and parasubiculum to DG [63],
from boundary cells in subiculum to CA1 [9,10,103,104],
and from lEC [99,100] and subcortical structures [77] to all
hippocampal subfields, are presumably sufficient to sup-
port place cell firing (Box 4).

Finally, it is important to emphasise that the hippo-
campal formation represents a processing loop in which
CA1 place cells provide significant return projections to
grid cells in the deeper layers of mEC, pre-, and para-
subiculum [60–63]. Grid firing patterns are oriented by
polarising visual cues, stable between visits to an envir-
onment, and parametrically rescaled when a familiar
environment is reshaped, demonstrating that grid cells
receive environmental sensory input that may be pro-
vided by place cells [8,65]. This is consistent with the
firing of mEC principal cells following that in hippocam-
pus during movement related theta [92], and the obser-
vation that inactivation of the hippocampus eliminates
grid firing patterns [105]. Place cell input may serve
to reduce accumulating path integration error in the
grid cell network, consistent with the fact that grid firing
patterns are less coherent in novel environments, before
associations with sensory information may have devel-
oped [68].

In this view, the grid and place cell networks provide
complementary spatial representations that interact to
support accurate navigation and mnemonic function: grid
cells constitute a highly efficient, context-independent
spatial code that supports path integration and large-scale
vector navigation [94,95,106], whereas place cells integrate
multimodal sensory information to encode defining cues at
specific locations in support of episodic memory. Interac-
tion between these networks is crucial for accurate naviga-
tion across large-scale space – connections between place
cells and grid cells could associate specific environmental
locations with their corresponding ‘grid coordinates’ in
support of vector navigation; and could also provide a
powerful error correction mechanism for path integration
because small errors in grid field firing will correspond to
locations outside the current environment [106]. Although
this view sees place cells as essential for encoding the
conjunction of sensory stimuli at a specific location, which
may underpin their putative role in episodic memory, it is
less clear if the path integrative and strongly spatial
correlates of grid cells also contribute to episodic memory
function.
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