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SUMMARY

Mammals are able to navigate to hidden goal loca-
tions by direct routes that may traverse previously
unvisited terrain. Empirical evidence suggests that
this ‘‘vector navigation’’ relies on an internal repre-
sentation of space provided by the hippocampal
formation. The periodic spatial firing patterns of
grid cells in the hippocampal formation offer a
compact combinatorial code for location within
large-scale space. Here, we consider the computa-
tional problem of how to determine the vector be-
tween start and goal locations encoded by the firing
of grid cells when this vector may be much longer
than the largest grid scale. First, we present an
algorithmic solution to the problem, inspired by the
Fourier shift theorem. Second, we describe several
potential neural network implementations of this
solution that combine efficiency of search and bio-
logical plausibility. Finally, we discuss the empirical
predictions of these implementations and their rela-
tionship to the anatomy and electrophysiology of
the hippocampal formation.

INTRODUCTION

It is believed that mammals can use an internal representation of

space to navigate directly to goal locations (O’Keefe and Nadel,

1978; Gallistel, 1990) without following explicit sensory cues

(Morris et al., 1982) or a well-learned sequence of actions (Pack-

ard and McGaugh, 1996). This ‘‘vector navigation’’ problem can

be posed in terms of how the representation of a goal location

can be combined with that of the current location to infer the

vector between the two. Importantly, the resulting trajectory

may be novel, having never before been taken by the animal,

and could pass through regions of the environment that have

not previously been visited (Tolman, 1948). Moreover, this ability

does not require learning from reinforcement over multiple trials

(e.g., Sutton and Barto, 1998) as it can occur within a single trial

(Steele and Morris, 1999), benefit from ‘‘latent’’ learning in the

absence of reinforcement (Tolman, 1948; Bendig, 1952; Keith
andMcVety, 1988), and need not show blocking or overshadow-

ing between multiple cues (Hayward et al., 2003; Doeller and

Burgess, 2008).

The ability to perform vector navigation is impaired by bilateral

damage to the hippocampal formation (Morris et al., 1982; Par-

ron and Save, 2004; Steffenach et al., 2005; Van Cauter et al.,

2013). Similarly, metabolic activity in the human hippocampus

correlates with navigational performance (Maguire et al., 1998;

Hartley et al., 2003; Iaria et al., 2003), and damage to the hippo-

campus is associated with impaired spatial navigation (Kolb and

Whishaw, 1996; Abrahams et al., 1997; Burgess et al., 2002) in

addition to more general mnemonic deficits (Scoville and Milner,

1957; Squire and Zola-Morgan, 1991; Cohen and Eichenbaum,

1993). At the neural level, the mammalian hippocampal forma-

tion contains several different representations of self-location

and orientation including place cells in the hippocampus proper

(O’Keefe and Dostrovsky, 1971; Muller and Kubie, 1987); head

direction cells in the subicular complex and deeper layers of

mEC (J.B. Ranck, 1984, Soc. Neurosci., abstract; Taube et al.,

1990; Sargolini et al., 2006); and grid cells in the superficial layers

of mEC, pre- and para-subiculum (Hafting et al., 2005; Sargolini

et al., 2006; Boccara et al., 2010). Earlier models of vector navi-

gation generally focused on the well-characterized spatial activ-

ity of place cells (e.g., Dayan, 1991; Burgess et al., 1994; Sharp

et al., 1996; Touretzky and Redish, 1996; Conklin and Eliasmith,

2005). In smaller environments, place cells typically exhibit a sin-

gle spatial receptive field, firing whenever the animal enters a

specific portion of the environment. As such, a simple way to

navigate using place cells is to compare a representation of

the goal location with that of the current location and move so

as to increase the similarity between the two (Burgess and

O’Keefe, 1996).

However, despite providing a potentially useful one-to-one

relationship with the locations of specific sensory and affective

environmental features, place cell firing patterns do not explicitly

represent the structure of space (O’Keefe and Nadel, 1978).

There appears to be no consistent relationship between the

locations of a place cell’s firing fields in different environments

(O’Keefe and Conway, 1978; Thompson and Best, 1989) and

no pattern relating the multiple firing fields that a place cell

may have in larger environments (Fenton et al., 2008). These

properties imply that any mapping between place cell represen-

tations and translation vectors used for navigation would have to

be re-learned in each new environment. Moreover, navigation
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Figure 1. Properties of the Grid Cell System

(A) Left: schematic of single unit recording. Middle

left: raw data from a sample mEC grid cell. The

animal’s path is indicated by the black line, and the

positions at which action potentials were fired are

superimposed in blue. Middle right: firing rate map

for the same mEC grid cell, with high firing rates

indicated by ‘‘hot’’ colors. Right: the regular grid-

like firing pattern can be characterized by its

orientation, scale, and offset or spatial ‘‘phase.’’

(B) Two mEC grid cells co-recorded on a single

tetrode in different environments exhibit the same

grid scale and orientation but differ in their offset or

relative spatial phase. Top row: firing rate maps for

a pair of grid cells recorded in a familiar (left) and

novel (right) environment. Bottom row: spatial

cross-correlation of the grid cell firing rate maps in

each environment. Black dashed lines indicate the

central six peaks of the cross-correlation; colored

line shows the distance and direction from the

central peak to the origin of the spatial cross-

correlation, after correcting for changes in grid

scale and ellipticity. This illustrates that the offset

between the firing fields of those two grid cells is

preserved between environments, even when the

grid pattern has expanded and deformed (adapted

from Barry et al., 2012).

(C) Grid cells appear to be organized into discrete

functional modules whose scale increases in

discrete steps along the dorso-ventral axis of mEC

(adapted from Barry et al., 2007).

(D) Grid field orientation of grid cells recorded in

three different rats. The orientations of grid firing

patterns are significantly clustered within and be-

tween modules. Grid cells with spatial scales that

differ by less than 20% are assumed to belong to a

singlemodule and grouped by color (adapted from

Barry et al., 2007).
using place cell representations is limited in range to the diam-

eter of the largest place fields, unless combined with experi-

ence-dependent learning over multiple trials (e.g., Dayan 1991;

Blum and Abbott, 1996; Brown and Sharp, 1995; Foster et al.,

2000), which will tend to bias behavior toward previously learned

routes. Beyond this range, the similarity of the current and goal

place cell representations will be zero, providing no gradient in

similarity leading to the goal location. Although large place fields

have been recorded (�10 m; Kjelstrup et al., 2008), these prop-

erties clearly limit the utility of place cell representations for

large-scale vector navigation.
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In contrast to place cells, grid cells

exhibit several properties that afford

large-scale vector navigation. Grid cells

also show stable spatial firing correlates

but with multiple firing fields distributed

in a regular hexagonal array that covers

all environments visited by the animal

(Hafting et al., 2005; Sargolini et al.,

2006; Figure 1A). Grid cells are organized

into functional modules within medial

entorhinal cortex (mEC): cells that are
proximate in the brain tend to have firing patterns that share

the same scale and orientation but a fixed spatial offset relative

to one another (i.e., exhibit a different spatial ‘‘phase’’; Hafting

et al., 2005; Barry et al., 2007; Stensola et al., 2012). Impor-

tantly, the relative spatial phase of any two simultaneously

recorded grid cells from the same module appears to be

conserved across all environments visited by the animal, and

a small number of grid firing patterns can completely cover

the environment (Hafting et al., 2005; Sargolini et al., 2006; Fig-

ure 1B). Grid scale increases between modules in discontinuous

steps along the dorso-ventral axis of mEC, with the smallest



being around 25 cm and the largest so far recorded exceeding

300 cm and probably representing the fourth or fifth of up to ten

discrete scales (Barry et al., 2007; Stensola et al., 2012; Fig-

ure 1C). The orientations of grid firing patterns in different mod-

ules are also clustered (Barry et al., 2007; Stensola et al., 2012;

Figure 1D). It is not yet clear whether grid cells in the pre- and

para-subiculum have the same topography (Boccara et al.,

2010).

The regular periodic firing patterns of grid cells potentially

provide a compact code for location that resembles a residue

number system, encoding positions over a very large range

that approaches the lowest common multiple of the spatial

scales of all grid modules (Gorchetchnikov and Grossberg,

2007; Fiete et al., 2008; Sreenivasan and Fiete, 2011; Mathis

et al., 2012). Interestingly, grid cells are widely believed to pro-

vide a path integration input to place cells, updating the repre-

sentation of self-location by a vector describing the animal’s

recent motion (Hafting et al., 2005; O’Keefe and Burgess,

2005; McNaughton et al., 2006; Rolls et al., 2006; Solstad

et al., 2006). However, by providing a context-independent

spatial metric, grid cells also have the potential to solve the in-

verse problem of vector navigation—to compute a translation

vector between current and previously known locations, as

opposed to combining a previously known location with the

subsequent movement vector to compute the current location.

More generally, the periodic firing patterns of grid cells appear

to provide a framework with which to infer the vector between

two locations, even when those locations are much farther

apart than the largest grid scale (Gorchetchnikov and Gross-

berg, 2007; Fiete et al., 2008; Huhn et al., 2009; Masson and

Girard, 2011; Erdem and Hasselmo, 2012; Kubie and Fenton,

2012).

Here, we consider the problem of large-scale vector naviga-

tion with grid cells at Marr’s three levels of analysis (Marr and

Poggio, 1977). First, we outline the computational problem to

be solved: how to compute a translation vector between co-

ordinates encoded in an idealized grid cell system, and

describe how this relates to the capacity of that system to

encode unique locations (see also Gorchetchnikov and Gross-

berg, 2007; Fiete et al., 2008; Sreenivasan and Fiete, 2011).

Second, we describe an algorithmic solution to this problem,

based on the grid cell network and inspired by the Fourier shift

theorem (see also Orchard et al., 2013). This solution is focused

on resolving ambiguity between the multiple, periodic locations

represented by activity within each grid module, rather than

optimizing the efficiency and accuracy of the grid cell code

for location within the scale of the largest grid (for this latter

topic, see Mathis et al., 2012, 2013; Wei et al., 2013). Finally,

we describe several plausible neural network implementations

that use grid cells to calculate the translation vector between

start and goal locations in 2D space over distances that can

exceed the largest grid scale (see also Fiete et al., 2008;

Huhn et al., 2009; Erdem and Hasselmo, 2012; Kubie and Fen-

ton, 2012; Erdem and Hasselmo, 2014). We focus on proposed

mechanisms that can perform vector navigation relatively

rapidly (i.e., without an exhaustive search of the numerous

possible solutions) and that provide experimentally testable

predictions.
RESULTS

The Computational Problem
The Grid Cell Representation of Space

We parameterize the grid cell spatial representation as follows:

there are M grid cell ‘‘modules’’ with spatial scale si (s1 being

the largest and sM the smallest) that each consist of a topo-

graphically ordered population of mi cells. In 1D space, we can

visualize each module of grid cells as a ring that supports a pop-

ulation activity bump centered at phase piwhere 0% pi < 2p (Fig-

ure 2A). In 2D space, we can visualize each module of grid cells

as a twisted torus supporting a single activity bump centered at

phases pi
!= ðpx;i; py;iÞ along the principal axes of a unitary ‘‘tile’’

of the grid pattern (i.e., unit vectors x!and y!; see Figures 2B and

2C; Guanella et al., 2007). Note that one can choose any two

non-collinear axes to define the grid phase and corresponding

unit tile (Kubie and Fenton, 2012) but, for simplicity, we consider

two of the axes of symmetry of the grid pattern so that grid

scale is equal on each. Moreover, twisted torus connectivity is

only necessary when considering grid cell activity as a single

bump—other network topologies can account for the grid cell

firing pattern when multiple activity bumps are present (e.g.,

Fuhs and Touretzky, 2006; Burak and Fiete, 2009). Finally,

increasing the number of grid cells within a module improves

precision, but not the amount of information encoded beyond

the two degrees of freedom needed to define the animal’s loca-

tion within the corresponding tile.

The Vector Navigation Problem

The 1D vector navigation problem can be stated thus: given the

grid cell representations of two locations a and b, calculate the

displacement between those locations d = b � a (Figure 3A).

More specifically, the grid cell representations of locations a

and b correspond to the spatial phases of activity bumps in

each grid module {pi(a) j i = 1 to M}={p1(a),p2(a),.,pM(a)} and

{pi(b) j i = 1 toM}={p1(b),p2(b),.,pM(b)}. As an example, consider

three grid cell modules with scales s1 = 50 cm, s2 = 30 cm and

s3 = 20 cm. If the distance between the current location a and

goal location b is d = 75 cm, and (for the sake of simplicity, but

without loss of generalization) the phase of each module is

0 at the current location a—i.e., p1(a) = 0, p2(a) = 0 and p3(a) =

0—then at b the phase of each module will be proportional to

the distance d modulo grid scale si:

p1ðbÞ= 75mod 50

50
32p=p

p2ðbÞ= 75mod 30

30
32p=p

p3ðbÞ= 75 mod 20

20
3 2p=

3p

2
:

The 1D vector navigation problem is to recover the displace-

ment d from these values of {pi(b)} (Figure 3A).

Similarly, the 2D vector navigation problem can be

stated thus: given the grid cell representations of two loca-

tions a! and b
!
, calculate the displacement vector between

those locations d
!

= b
!� a!. More specifically, the grid cell
Neuron 87, 507–520, August 5, 2015 ª2015 The Authors 509
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Figure 2. The Grid Cell Representation of

Space

(A) Top: in 1D, a single module of grid cells encode

location with spatially offset, periodic firing fields

corresponding to different phases of activity pi in a

ring of cells. Bottom: the position of an animal can

therefore be described by the periodic spatial

phase pi that corresponds to a single activity bump

(hot colors) moving around the ring of cells ac-

cording to the animal’s self-motion.

(B) In 2D, a singlemodule i of grid cells encodes the

location of an animal as a pair of spatial phases

p
!

i = ðpx;i ; py;iÞ along the grid axes x! and y! (left).

These axes define a single, rhombic grid cell tile

that can be joined along all edges to create a

twisted torus topology (right).

(C) Movement along each of the principal axes

of the grid field in space (left) corresponds to

movement around each of the principal axes of the

twisted torus (right) in the grid cell module.
representations of locations a and b correspond to the sets of

spatial phases fpx;ið a!Þg= fpx;1ð a!Þ; px;2ð a!Þ;.;px;Mð a!Þ g and

fpy;ið a!Þg= fpy;1ð a!Þ; py;2ð a!Þ;.;py;Mð a!Þ g that define position

a! in module i along principal axes x and y (which, in this case,

are separated by 60�; see Figures 2B and 2C). Again, consider

three grid cell modules with scales s1 = 50 cm, s2 = 30 cm and

s3 = 20 cm. If the displacement vector between the current loca-

tion a! and goal location b
!

is d
!

= ð75 cm; 37:5 cmÞ, and the

phase of each module on each axis is 0 at the current location,

then at b
!

the phases of the modules will be:

�
px;i

�
b
!��

=

�
p;p;

3p

2

�

�
py;i

�
b
!��

=

�
3p

2
;
p

2
;
7p

4

�
:
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The 2D vector navigation problem is to

recover the displacement vector d
!

from

fpx;ið b!Þg and fpy;ið b!Þg (Figure 3B).

Note that this corresponds to a simple

generalization of the 1D vector navigation

problem to multiple axes.

Algorithmic Solution in 1D
The cyclical nature of the grid representa-

tion within each module i is such that an

activity bump at phase pi implicitly repre-

sents an infinite set of ‘‘unwrapped’’

phases pi + 2pni, where ni can take any

integer value, corresponding to an infinite

set of distances si(pi/2p + ni) along that 1D

axis that are separated by the scale si of

module i. Initially, we assume that all

phases are zero at the current location a

and the distance d to a goal location b

must be inferred from the grid cell repre-

sentation across modules at that location
{pi(b)} = {p1(b), p2(b),.,pM(b)}. The grid representation of the goal

location b is such that there is a set of unwrapped phases (one for

each module) that explicitly represent the same distance—i.e.,

there is a set of integers {ni} for which:

d = si

� pi

2p
+ ni

	
for all i: (Equation 1)

Graphically, this coherent set of unwrapped phases across

modules falls on a horizontal line when plotted against a y axis

of represented distance (i.e., y = d; Figure 4A) or, equivalently,

on a straight line through the origin when plotted against a

y axis of phase against inverse grid scale (Equation 2; Fig-

ure 4B)—i.e., there is a set of integers {ni} for which:

pi + 2pni = 2pd



1

si

�
for all i: (Equation 2)
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Figure 3. The Problem of Vector Navigation

with Grid Cells

(A) In 1D, how do we find the displacement d be-

tween the starting location a (red) and goal location

b (yellow) given the grid cell representations of

those locations (i.e., sets of spatial phases across

grid modules {pi(a)} and {pi(b)})?

(B) In 2D, how dowe find the distance and direction

between start and goal locations given the grid

cell representations of those locations (i.e., sets of

spatial phases across grid modules and principal

axes: fpxð a!Þ; pyð a!Þg, fpxð b!Þ; pyð b!Þg)?
This latter relationship is obtained by re-arranging Equation 1

and corresponds to the Fourier shift theorem (see discussion

of the Algorithmic Solution in 2D below; Orchard et al., 2013).

Thus, the distance d to a goal location represented by the set

of module phases {pi} can be inferred by fitting a straight line

through the origin on a plot of unwrapped phases pi + 2pni
against inverse grid scale 1/si across modules (Figure 4B). More-

over, this result can be generalized to any pair of arbitrary current

and goal locations on that 1D axis, by replacing the absolute

phase pi at the goal location with the phase difference Dpi be-

tween grid cell representations of current and goal locations in

each module (Equation 3):

d =b� a= si



piðbÞ
2p

+ niðbÞ
�
� si



piðaÞ
2p

+ niðaÞ
�
for all i

Dpi + 2pni = 2pd



1

si

�
for all i: (Equation 3)

It is important to note that Equations 1 and 2 describe an under-

determined system, as there are more unknowns (M + 1, corre-

sponding toniandd) thanequations (M, one for eachgridmodule).

Hence,multiple possible solutions d(k) exist for each unique com-

bination of phase values {pi} or phase differences {Dpi} across

modules, such thatonesetofgridcell phasesacrossmodules rep-

resents more than one, periodically spaced location in the real

world (Figure S1). The capacity of the grid cell system is defined
Neuron 87, 507–5
as themaximumspatial rangewithinwhich

each combination of phase values {pi}

(or phase differences {Dpi}) corresponds

to a unique decoded location (or displace-

ment)—i.e., the distance between loca-

tions encoded by the same set of grid

cell phases or the period of the grid cell

system as a whole. Theoretical studies

suggest that this capacity is much greater

than the typical foraging range of an ani-

mal (Gorchetchnikov and Grossberg,

2007; Fiete et al., 2008; Sreenivasan and

Fiete, 2011; Mathis et al., 2012; see

Supplemental Experimental Procedures).

Beyond that capacity, the spatial re-

presentation provided by the grid cell

network as a whole is periodic. Hence,

Equations 1 and 2 only convert the spatial
representation between residue-like and linear number systems

within this capacity, andmore generally convert between two res-

idue-like number systems—one with a discrete set of smaller

spatial scales and one with a single, much larger spatial scale.

Algorithmic Solution in 2D
In 2D, the location of an activity bump can be defined by

considering any two non-collinear axes (denoted by unit

vectors x! and y!). An activity bump at phase pi
!= ðpx;i; py;iÞ

in module i then maps onto an infinite series of periodic

locations siððpx;i=2pÞ+ nx;iÞ x! + siððpy;i=2pÞ+ ny;iÞ y!, where

fni!g= fnx;i; ny;ig can be any pair of integers. We initially assume,

for simplicity, that the orientations of different grid modules

are aligned, i.e., x! and y! are independent of i (Barry et al.,

2007; Stensola et al., 2012) and that grid firing fields are

circularly symmetric as opposed to elliptical, i.e., the scale si is

the same for directions x! and y! (but see Stensola et al.,

2012). In this case, the location of an activity bump within grid

module i can be visualized on a cylindrical polar plot as

ðr; q; zÞ= ðð1=siÞ; argðuj!Þ; pj;i + 2pnj;iÞ, where argðuj!Þ represents

the direction of the grid axes (e.g., u1
�!= x! and u2

�!= y!). Consid-

ering the phases of the goal representation along each axis, and

following the logic of the 1D solution, the distance and direction

to the goal location is indicated by the maximum gradient of a

plane through the origin that fits the phase points pj,i + 2pnj,i
for all modules i and axes j and lies within the capacity of the

grid cell system (Figure 4C).
20, August 5, 2015 ª2015 The Authors 511
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Figure 4. Algorithmic Solution to the Problem of Navigation with

Grid Cells

(A) In 1D, if we assume that the phase of all gridmodules at the starting location

a is zero, then the ‘‘unwrapped’’ set of periodic displacements corresponding

to the goal location b—i.e., si(pi(b)/2p + ni), where si is the grid scale and ni an

integer for module i—fall on a horizontal line y = d corresponding to the goal

location (gray dashed line).

(B) Similarly, the ‘‘unwrapped’’ set of spatial phases across modules pi(b) +

2pni, when plotted against inverse grid scale 1/si, fall on a straight line through

the origin with gradient 2pd (gray dashed line).

(C) In 2D, the ‘‘unwrapped’’ set of spatial phases corresponding to the goal

location across modules {px,i(b) + 2pnx,i, py,i(b) + 2pny,i}, when plotted against

inverse grid scale 1/si along the principal axes x!and y!, fall on a plane through

the origin (gray ellipse) whose maximum slope (within the capacity of the grid

cell system) corresponds to the distance and direction to the goal location

(yellow arrow).
Again, this result can be generalized to arbitrary current and

goal locations by replacing the absolute phases pj,i that define

the goal location with the phase differenceDpj,i between the cur-

rent and goal locations on each axis and in eachmodule. This so-

lution is consistent with the Fourier shift theorem (see Orchard

et al., 2013), with the sets of grid cells in each module that share

a common phase on each axis acting as Fourier components of

the spatial representation. If grid cell orientations are identical

across modules, then the displacement between start and goal

locations can be solved independently on each axis as in the

1D case: by finding the line through the origin that best fits the

phase points along that axis. We note that it is sufficient to solve

for two directions, as more axes do not provide additional inde-

pendent information—the constraint that
P

jpj;i = 0 for 3 direc-

tions separated by 120� (Burgess and Burgess, 2014) is implicitly

included by fitting lines through the origin. However, given inde-
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pendent noise in the firing rates of biological neurons, pooling es-

timates across directions could potentially mitigate error in the

extracted translation vector. Additionally, if grid cell orientations

are not conserved across modules, or if grid firing fields are ellip-

tical, then the solution still holds, but the plane must be fit to a

family of phase points that differ in axes uj;i
�! across grid cell mod-

ules and in spatial scale si across axes.

Neural Network Implementations
There are many potential neural network implementations of

vector navigation using grid cells, which exhibit varying degrees

of efficiency, parsimony, and biological plausibility. Here, build-

ing on previous work (e.g., Sun and Yao, 1994; Gorchetchnikov

andGrossberg, 2007; Fiete et al., 2008; Huhn et al., 2009;Mhatre

et al., 2012; Masson and Girard, 2011; Erdem and Hasselmo,

2012; Kubie and Fenton, 2012; Erdem and Hasselmo, 2014),

we describe two broad classes of solution and present neural

network simulations that demonstrate the potential accuracy

with which they can compute translation vectors between arbi-

trary locations in large-scale space (see Supplemental Informa-

tion for details). The first class of solution uses additional neural

circuitry to directly decode grid cell activity at current and goal

locations and then read out the distance between those loca-

tions along specific 1D axes, effectively converting the grid cell

residue-like number system to a linear spatial metric (see also

Sun and Yao, 1994; Fiete et al., 2008; Huhn et al., 2009; Masson

and Girard, 2011). The second class of solution uses network

dynamics to perform sequential, directed searches along spe-

cific 1D axes, the search being initiated from either the current

or goal location in order to ascertain the distance between those

locations (see also Erdem and Hasselmo, 2012; Kubie and

Fenton, 2012; Erdem and Hasselmo, 2014). Having described

each neural network implementation, we discuss their relative

strengths and weaknesses as well as the experimental predic-

tions they make.

Vector Navigation by Direct Decoding: The ‘‘Distance

Cell’’ Model

The ‘‘distance cell’’ model decodes both the absolute current

and goal locations from rate-codedmodular grid cell representa-

tions and then calculates the translation vector between those

locations. An array of distance cells each encode a unique loca-

tion a along a single directional axis x! (see also Fiete et al., 2008;

Huhn et al., 2009). Distance cells receive input from grid cells in

each module with synaptic weights proportional to their mean

firing rate at that location a on the axis x!. Hence, each distance

cell is maximally activated by a specific set of phase values

across grid cell modules {px,i(a)} (Figure 5A), and winner-take-

all dynamics within each distance cell array prevents firing in dis-

tance cells that receive lower levels of input. The total number of

distance cells is limited by the capacity of the grid cell system to

encode locations as unique sets of phases across grid cell

modules {px,i(a)} (see Supplemental Experimental Procedures;

Figure S1), and all potential locations within that capacity are en-

coded by a distance cell. All distance cells provide input to a

readout neuron with synaptic weights that increase in strength

with increasing distance along the axis. The firing rate of this

readout neuron then signals the distance from the origin to that

location along the directional axis x! (Figure 5A).
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Figure 5. The Distance Cell Model

(A) An array of distance cells encode specific lo-

cations along a one-dimensional axis and receive

input from grid cells that are active at each location

along that axis. When grid cells that encode a goal

location in each module fire, they activate a

single distance cell that encodes that location,

and winner-take-all dynamics eliminates activity

in other distance cells. All distance cells provide

input to a single readout cell with synaptic

strengths that increase linearly with increasing

displacement along the axis. The firing rate of that

readout cell then encodes the displacement from

the origin to the goal location along that axis.

(B) Combining two distance cell arrays allows the

distance between arbitrary start and goal locations

in either direction along the axis to be decoded.

One distance cell array decodes the start location,

and the other decodes the goal location. Each

distance cell array projects to one ‘‘move up’’ (left)

and one ‘‘move down’’ (right) readout cell with

synaptic weights w that increase linearly in

opposing directions along the axis. These readout

cells then encode the displacement between start

and goal locations in each direction along that

axis.

(C) The distance cell model can be extended to

two dimensions if all grid cells that share a com-

mon phase on each of at least two non-collinear

axes project to the same distance cell. Combining

the displacements encoded by the pair of readout

cells for each axis provides the vector between

start and goal locations in two-dimensional space.

For full simulation details, see Supplemental

Experimental Procedures and Figure S2.
The distance cell model can be extended to deal with arbitrary

start and goal locations along the axis x! by incorporating an

additional array of distance cells and an additional readout cell,

analogous to neural network models of the mental number line

(Dehaene, 1997; Chen and Verguts, 2010). In this case, one

distance cell array decodes current location a and the other de-

codes goal location b (Figure 5B). Both distance cell arrays proj-

ect to both readout cells, but the strength of connections from

each distance cell array to each readout cell increases in oppo-

site directions along the axis x!. The relative firing rates of the two

readout cells then encode the relative distance between current

and goal locations along that axis in each direction (Figure 5B).

Translation vectors in 2D space can be constructed from at least

two pairs of distance cell arrays that decode current and goal

positions a! and b
!

on non-collinear axes x! and y!. In this

case, each distance cell on each axis receives input from all

grid cells within a module that share a common phase on that

axis (Figure 5C). This model can also accommodate grid mod-
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ules that differ in their ellipticity and

orientation, provided that synaptic con-

nections between grid cells and distance

cells accurately project the position en-

coded by those grid cells onto the dis-

tance cell axis. Simulations demonstrate

that the distance cell model can accu-
rately decode translation vectors between arbitrary start and

goal locations in large-scale 2D space (see Supplemental Exper-

imental Procedures; Figure S2).

Vector Navigation by Direct Decoding: The ‘‘Rate-Coded

Vector Cell’’ Model

The distance cell model independently decodes current and goal

locations from sets of grid cell phases across modules {px,i}

before computing the linear displacement between them. As

an alternative, it is possible to decode the linear displacement

directly from the set of phase differences between grid cell rep-

resentations at current and goal locations across modules

{Dpx,i}. In this ‘‘rate-coded vector cell’’ model, an array of vector

cells each encode a specific displacement d from the current

position along a single directional axis x!. Each vector cell re-

ceives input from all pairs of grid cells within eachmodule whose

unwrapped spatial phase difference Dpx,i along the axis x! cor-

responds to that displacement, i.e., d = ((Dpx,i/2p) + ni)si for

some integer ni, through multiplicative synapses (Figure 6A).
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A B Figure 6. The Rate-Coded Vector Cell

Model

(A) An array of vector cells encode specific dis-

placements d along a one-dimensional axis x! and

receive input from pairs of grid cells within each

module i encoding current (red) and goal (yellow)

locations whose unwrapped phase differenceDpx,i
corresponds to that displacement, i.e., d = ((Dpx,i/

2p) + ni)si for some integer ni, where si is the grid

scale.

(B) When grid cells encoding current (red) and goal

(yellow) locations in each module fire simulta-

neously, they activate a single vector cell that

encodes the consistent displacement across

modules, and winner-take-all dynamics eliminates

activity in other vector cells. Combining the activity

of vector cells across at least two non-collinear

axes provides the overall translation vector be-

tween start and goal locations in two-dimensional

space. For full simulation details, see Supple-

mental Experimental Procedures and Figure S3.
Vector cells also receive input from all grid cell pairs in other

modules whose unwrapped phase difference corresponds to

the same absolute displacement d. Hence, each vector cell is

maximally activated by a specific set of phase differences be-

tween current and goal locations across grid cell modules along

axis x! {Dpx,i} (Figure 6B). The total number of vector cells is

limited by the capacity of the grid cell system to encode different

displacements with unique sets of phase difference values

across grid cell modules {Dpi} (see Supplemental Experimental

Procedures; Figure S1). When grid cells encoding the current

and goal locations acrossmodules are simultaneously activated,

winner-take-all dynamics ensure that only a single vector cell

corresponding to the distance and direction between those loca-

tions becomes active. Translation vectors in 2D space can be

constructed from at least two pairs of vector cell arrays that

encode displacements in each direction on non-collinear axes

x! and y!. Simulations demonstrate that the rate-coded vector

cell model can accurately decode translation vectors between

arbitrary start and goal locations in large-scale 2D space (see

Supplemental Experimental Procedures; Figure S3).

Vector Navigation by Direct Decoding: The ‘‘Phase-

Coded Vector Cell’’ Model

As an alternative to the firing rate model described above, vector

cells could make use of the temporal code for location provided

by theta phase precession in grid cells. As animals transit

through a firing field, a large proportion of grid cells fire spikes

progressively earlier relative to the 5–11 Hz theta oscillation in

the local field potential (LFP; Hafting et al., 2008; Reifenstein

et al., 2012; Climer et al., 2013; Jeewajee et al., 2014; Figure 7A).

In place cells, phase precession is stable across trials, while

firing rates vary from trial to trial (Fenton andMuller, 1998; Huxter

et al., 2003); and in both place and grid cells, phase precession

scales with the size of firing fields (Huxter et al., 2003; Climer

et al., 2013; Jeewajee et al., 2014) and conveys information

about an animal’s location beyond that encoded by the firing

rate alone (Jensen and Lisman, 2000; Reifenstein et al., 2012).
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Importantly, phase precession dictates that the location of

each grid field relative to the current location—i.e., the spatial

phase difference Dpi—is encoded in the theta firing phase of

the corresponding grid cells.

Consider a population of grid cells that exhibit phase preces-

sion aligned with a specific 1D axis x!—that is, their theta firing

phase encodes the distance traveled through the grid module

along that axis, regardless of the trajectory taken (see Figure 7B;

Climer et al., 2013; Jeewajee et al., 2014). Under these circum-

stances, the spatial phase difference between current location

a and goal location b along that axis in module i (Dpx,i; see Fig-

ure 2A) is proportional to the difference in theta firing phases of

grid cells encoding the current location GCa and goal location

GCb in that module, BiðGCaÞ and BiðGCbÞ, i.e., Dpx;ifDBi. If

we assume that grid cells encoding the current location consis-

tently fire at the trough of theta (i.e., �0 rad), then the relative

spatial phase of grid cells encoding the goal location b within

each module will be proportional to their theta firing phase, i.e.,

ððb� aÞmod si=siÞfBiðGCbÞ (Figure 7C). Hence, the spatial

phase difference Dpx,i between grid cells encoding current and

goal locations within each module will also be proportional to

the theta firing phase of grid cells encoding the goal location,

i.e., Dpx;ifBiðGCbÞ. Vector cells that are sensitive to a specific

pattern of spike phases in grid cells encoding the goal location

across modules can therefore directly decode the displacement

between current and goal locations.

As an example, consider two grid cell modules of scales s1 =

30 cm and s2 = 20 cm on the 1D axis x! and, for simplicity, as-

sume that phase precession is linear and covers the full range

of theta phase values—from p rad at field entry, through 0 rad

at the field center to �p rad at the exit. If the current location is

a = 0 cm, then grid cells encoding a goal location at b = 30 cm

will fire at fBiðGCbÞg= f0;p radg in the two modules, corre-

sponding to the phase difference between their firing fields

within eachmoduleDpx,i (Figure 7D). Similarly, if the current loca-

tion is a = 45 cm, then grid cells encoding a goal location with the
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Figure 7. The Phase-Coded Vector Cell

Model

(A) As animals transit through a firing field, a large

proportion of grid cells exhibit theta phase pre-

cession, firing spikes progressively earlier relative

to the 5–11 Hz theta oscillation in the local field

potential. This results in an approximately linear

relationship between firing phase and progress

through the grid field.

(B) If phase precession in grid cells is aligned with a

specific one-dimensional axis—that is, theta firing

phase encodes the distance traveled through the

grid module along that axis, regardless of the tra-

jectory taken—then theta firing phase can be used

to infer the relative spatial phase of any two grid

cells within a module along that axis. Red dashed

line/star indicates the current location on each axis.

(C) Phase precession aligned with a specific one-

dimensional axis ensures that the difference in

theta firing phase between grid cells encoding the

current location a (which will be �0 radians) and a

goal location b is proportional to the difference in

their spatial phase Dpi or relative position within

each grid module. Hence, if the goal location b is

less than half a grid scale ahead of the current

location a (as shown here), then grid cells encoding

that location will fire at a later theta phase.

(D) The set of grid cells across modules i = 1 to M

that encode a goal location at a set displacement

from the current location along a specific one-

dimensional axis will always fire at a specific

combination of theta phase values f[x;ig, irre-

spective of the current location. Here, we plot the

theta firing phase at the current location of grid

cells in two modules with scales si = {30, 20 cm}

against the location of their firing fields relative to

the current location. Grid cells encoding the current

(‘‘start’’) location always fire at the trough of theta

(i.e., 0 rad), while grid cells encoding a goal location

that is d = 30 cm from the current location along

that axis are always encoded by grid cells firing at

phases [x = {0, p rad}, respectively. Hence, an

array of vector cells that are sensitive to specific

combination of phase values [x across modules

can decode the distance to the goal location along

that axis. For full simulation details, see Supple-

mental Experimental Procedures and Figure S4.
same displacement, i.e., b = 75 cm, will again fire at

fBiðGCbÞg= f0;p radg, corresponding to the same phase differ-

ence between their firing fields within each module Dpx,i (Fig-

ure 7D). Hence, if only grid cells encoding the goal location fire
Neuron 87, 507–5
in a single theta cycle, then a vector cell

that is sensitive to this specific pattern of

firing phases in grid cells encoding the

goal location across modules—i.e.,

fBiðGCbÞg—can directly decode the

displacement between current and goal

locations. More generally, this result im-

plies that the distance from the current

position to every known goal location

along that axis is encoded in each theta

cycle by the relative phase of firing in
grid cells across modules that encode those locations

fBiðGCbÞg. Translation vectors between current and goal loca-

tions in 2D space can be decoded from the pattern of firing

phases in separate populations of grid cells that exhibit phase
20, August 5, 2015 ª2015 The Authors 515
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Figure 8. The Linear Look-Ahead Model

(A) During linear look-ahead events, activity in the grid cell network is initiated

at the current (or goal) location and updated according to simulatedmovement

away from that location along a specific one-dimensional axis. The firing rate of

a single readout cell that integrates activity in one or more grid cell modules

over time will then indicate the distance traveled along that axis. Arrival at the

goal (or current) location is signaled by simultaneous activity in grid cells

representing that location across modules.

(B and C) Linear look-ahead effectively performs a directed search for the goal

(or current) location, starting from the current (or goal) location and moving

sequentially through locations of increasing displacement along that direc-

tional axis. For full simulation details, see Supplemental Experimental Pro-

cedures and Figure S5.
precession aligned with two non-collinear axes x! and y! (Fig-

ure 7B). Simulations demonstrate that the phase-coded vector

cell model can accurately decode translation vectors between

arbitrary start and goal locations in large-scale 2D space (see

Supplemental Experimental Procedures; Figure S4).

Vector Navigation by Directed Search: The ‘‘Linear Look

Ahead’’ Model

An alternative to directly decoding the translation vector be-

tween current and goal locations is a directed search along spe-

cific 1D axes, beginning at either of those locations, in order to

compute their relative position. During exploration, activity in

the grid cell network is believed to reflect an animal’s estimate

of self-location that is updated by self-motion signals (Fuhs

and Touretzky, 2006; McNaughton et al., 2006; Burgess et al.,

2007). However, it is possible that simulated movement signals,

decoupled from the animal’s actual motion, could also be used

to update the grid cell spatial representation, e.g., perform a

‘‘linear look ahead’’ (Erdem andHasselmo, 2012; Kubie and Fen-

ton, 2012; Erdem and Hasselmo, 2014) by simulating movement

away from the current position a along an arbitrary axis x! at a

constant speed (Figure 8A). In the 1D case, this is equivalent to

shifting the activity bump within each grid cell module around a

putative ring attractor circuit at a rate corresponding to a con-

stant spatial velocity across grid cell modules (i.e., faster for
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smaller scale modules; Figure 2A). The duration of the linear

look ahead event, or the activity of a neuron that integrates total

activity during the event, then encodes the displacement d of the

represented location along the direction x!. The displacement of

the goal location along that axis is signaled by simultaneous ac-

tivity in grid cells encoding the goal location in each module,

which could be achieved by coincidence detection in the corre-

sponding place cell, for example (Figure 8A).

In effect, linear look ahead systematically searches for amatch

between phase values across modules {px,i} that encode the

goal location on the axis x! with phase values that encode a

sequence of positions moving away from the current location

(Figures 8B and 8C). Alternatively, linear look ahead could be

initiated from the goal location and systematically search for a

match with phase values across grid modules that match the

current location. Translation vectors in 2D space can be con-

structed using linear look ahead in each direction along at least

two non-collinear axes, during which all grid cells that share a

phase {pj,i} on each axis in each module are simultaneously

active (Figure 5C). Hence, during each unidirectional linear look

ahead, different sub-populations of grid cells fire simultaneously,

according to their spatial phase on that axis. Simulations demon-

strate that the linear look-ahead model can accurately decode

translation vectors between arbitrary start and goal locations in

large-scale 2D space (see Supplemental Experimental Proce-

dures; Figure S5).

Critique of Grid Cell Vector Navigation Models

The direct decoding and linear look-ahead models described

above exhibit divergent strengths and weaknesses and make

different predictions for future experimental studies. Direct de-

coding models compute translation vectors quickly, without

the need to search multiple possible solutions, while the linear

look-ahead model predicts that the time required to compute

translation vectors scales with their length, because the directed

search takes longer to reachmore distant locations (Figure S5C).

This latter pattern might be more consistent with reports that hu-

man response times correlate with the length of imagined paths

(Kosslyn et al., 1978) and metabolic activity in the hippocampal

formation correlates with the distance to a goal during route

planning (Sherrill et al., 2013; Howard et al., 2014).

Each of the direct decoding models requires significant addi-

tional neural circuitry to compute translation vectors. This raises

the question as to how this circuitry develops or is learned

during active navigation but provides experimental predictions

regarding the existence of distance and readout or vector cell

firing patterns. The distance cell model, for example, requires

one or more neurons to encode each unique current and goal

location on at least two principal axes, or at least four times as

many distance cells as potential locations. These distance cells

would exhibit a band-like firing pattern, as they encode a series

of known allocentric locations along a specific 1Daxis (Figure 5C)

with a spatial periodicity equal to the capacity of the grid cell

system. Synaptic connections from grid to distance cells could

develop under a straightforward Hebbian learning rule during

exploration, analogous to models of the grid to place cell trans-

formation (Rolls et al., 2006; Solstad et al., 2006). Graded

connection weights between distance and readout cells could

be formed developmentally by Hebbian learning during the



propagation of a wave of activity along the distance cell popula-

tion, while the readout cell firing rate increased gradually over

time. This process need only occur once, as the same connectiv-

ity is then utilized across all environments.

The vector cell models require fewer additional neurons, as the

need for an intermediate representation of absolute location is

eliminated. This also allows the spatial resolution of vector cells

to be reduced for greater encoded displacements, with transla-

tion vectors being dynamically recalculated as the goal is ap-

proached (see Supplemental Experimental Procedures; Figures

S3 and S4). Vector cells would fire whenever an animal planned

to navigate to any one of a band of goal locations at a fixed

distance from the current location along a specific 1D axis.

This response would be invariant to translation of the current

and goal locations, in contrast to the purely allocentric co-ordi-

nate frame utilized by distance cells. Synaptic connectivity be-

tween pairs of grid cells in each module and vector cells could

be formed developmentally by Hebbian learning during the coor-

dinated propagation of two parallel waves of activity across the

sheet of grid cells in eachmodule, where the separation between

the waves reflects a specific phase difference along a 1D axis

and the corresponding set of vector cells remain active. Again,

we note that this process need only occur once. In the case of

the rate-coded vector cell model, those synaptic connections

must also be multiplicative, which lacks biological plausibility

(but see Mel, 1993), although the same functionality could be

achieved by the integration of inputs on distinct dendritic

branches (London and Häusser, 2005). The phase-coded vector

cell model avoids the need for multiplicative synapses but re-

quires grid cells that exhibit phase precession aligned with

specific 1D axes, and it is unclear from current data whether

such temporal coding exists within grid cells of the mEC (Hafting

et al., 2008; Reifenstein et al., 2012; Climer et al., 2013; Jeewajee

et al., 2014).

Unlike direct decoding models, the linear look-ahead model

makes use of neural mechanisms that are already in place to

update grid cell activity according to self-motion. In continuous

attractor network models of grid cell firing, directional input

from conjunctive cells in deeper layers could drive grid cell activ-

ity during linear look ahead (Fuhs and Touretzky, 2006; Sargolini

et al., 2006; Burak and Fiete, 2009); whereas in oscillatory inter-

ference models this input would come from velocity controlled

oscillators (VCOs; Burgess et al., 2007; Burgess, 2008; Has-

selmo, 2008; Welday et al., 2011). Independent of either model,

the necessary synaptic connectivity could also develop through

temporally asymmetric Hebbian learning within networks of

conjunctive grid by head-direction cells in the deeper layers of

mEC that would allow linear look ahead along the preferred firing

direction of those cells (Sargolini et al., 2006; Kubie and Fenton,

2012).

Each of the direct decoding models predicts activity in grid

cells encoding goal locations during route planning. It has

been demonstrated that place cells in humans are reactivated

during the retrieval of an episodic memory associated with that

location (Miller et al., 2013), but whether similar reactivation

occurs during route planning or in grid cells has yet to be deter-

mined. Importantly, the phase-coded vector cell model also pre-

dicts that the relative timing of this activity in grid cells across
modules would correspond to their theta firing phase at the cur-

rent location. Conversely, the linear look-ahead model predicts

the sequential activation of bands of grid cells that share a com-

mon phase on a specific 1D axis during route planning, analo-

gous to place cell replay and preplay events (Foster and Wilson,

2006; Davidson et al., 2009; Pfeiffer and Foster, 2013; see S.G.

Trettel and L.L. Colgin, 2014, Soc. Neurosci., abstract for similar

activity in grid cells during sleep). Interestingly, recent data indi-

cates that place cell ripple related preplay can include novel

routes (Ólafsdóttir et al., 2015)—a key property of vector naviga-

tion. However, the linear look-ahead model proposes activity

sweeps along two non-collinear axes, not necessarily oriented

toward the goal, in contrast to reports of goal-directed preplay

(Pfeiffer and Foster, 2013).

DISCUSSION

We have described an algorithmic solution to the computational

problem of large-scale vector navigation with grid cells. That is,

how to accurately compute translation vectors between arbitrary

locations in large-scale 2D space using the grid cell representa-

tions of those locations. This problem is the inverse of that

thought to be performed by grid cells during path integration—

extracting the translation vector between current and goal loca-

tions, as opposed to combining a previously known location with

a subsequent movement vector to estimate the current location.

Specifically, we have shown how the spatial phases of activity in

grid cell modules of different spatial scales at start and goal loca-

tions can be used to extract the distance and direction between

those locations. This is achieved by finding the maximum slope

of a plane that fits the family of points defined by the phase dif-

ference in each grid module and the inverse scale of that module

on at least two non-collinear axes (Figure 4C). Importantly, this

solution is robust to differences in grid orientation between grid

modules and ellipticity (i.e., differences in scale between axes)

within each grid module (Stensola et al., 2012). This solution re-

lates to the Fourier shift theorem, whereby the 2D translation

applied to a basis set of Fourier components can be recovered

from the phase changes across components (Orchard et al.,

2013).

We have also described several neural network implementa-

tions of this algorithmic solution, building on a large body of pre-

vious work that has explored how grid cells efficiently encode

location (Fiete et al., 2008; Mathis et al., 2012) and might

contribute to vector navigation (Huhn et al., 2009; Masson and

Girard, 2011; Erdem and Hasselmo, 2012; Kubie and Fenton,

2012; Erdem and Hasselmo, 2014). These models assume only

that the grid representations of current and goal locations are

known and produce direct vectors between those locations

that may traverse previously unknown terrain. Each proposed

implementation can decode 2D translation vectors with an accu-

racy and range that is comparable to the theoretical capacity of

the grid cell system, and each model offers specific strengths,

weaknesses, and experimental predictions. Several computa-

tional implementations that make use of the Chinese Remainder

Theorem to perform this conversion have previously been

proposed (Sun and Yao, 1994; Fiete et al., 2008; Masson and

Girard, 2011). These models have limitations, however, such
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as requiring a hard-wired energy landscape or readout weights,

producing linear outputs that are only correct modulo the lowest

common multiple of grid scales or performing gradient descent

on an energy landscape with multiple local minima (Masson

and Girard, 2011).

Two critical considerations for all grid cell models of vector

navigation are whether grid cells provide a single, global repre-

sentation of large-scale space and how vector navigation might

be affected by local distortions of that representation. Several

studies have demonstrated that grid firing patterns in isolated

environments can become distorted or fragmented by local

boundaries (Barry et al., 2007; Derdikman et al., 2009; Krupic

et al., 2015; Stensola et al., 2015). These deformations will impair

the ability of grid firing patterns to support vector navigation un-

less they affect all grid cell modules equally, which is not clear

from current data (but see Stensola et al., 2012). Interestingly,

however, it has recently been shown that grid firing patterns in

two separate environments are initially local but become globally

consistent when the animal is allowed sufficient experience of

navigating between environments (Carpenter et al., 2015).

Hence, given the opportunity to learn the relative location of

different local environments within a larger space, grid cell firing

patterns could provide a universal spatial metric for vector nav-

igation across large distances.

It is also important to note that the vector navigation models

described here cannot function in isolation. Grid cell firing pat-

terns must be anchored to environmental sensory stimuli, both

to prevent noise-related drift in the grid cell representation of

space and to facilitate the subsequent planning and execution

of real behavioral trajectories, which would incorporate the sen-

sory and affective features of locations lying along the decoded

vector. This sensory input might be mediated, in part, by projec-

tions from place, head direction, and boundary vector cells.

Moreover, the allocentric translation vectors extracted from the

grid cell network by each of the models presented here would

generally need to be converted into egocentric movement stra-

tegies elsewhere in the brain before they could be utilized for

actual navigation (Byrne et al., 2007).

Similarly, we note that both band cells (Burgess et al., 2007;

Krupic et al., 2012; Mhatre et al., 2012) and velocity-controlled

oscillators (VCOs), postulated by the oscillatory interference

model (Burgess et al., 2007; Burgess, 2008; Hasselmo, 2008)

and identified in the hippocampal formation (Welday et al.,

2011), encode periodic spatial phase with a constant scale along

a specific 1D axis. Such firing patterns correspond to Fourier

components of a 2D spatial representation (Orchard et al.,

2013) and could therefore be used in place of grid cell inputs

to support both the algorithmic solutions and various neural

network implementations presented here. Moreover, VCOs

show the appropriate frequency dependence on velocity to

encode displacement along a specific direction in their firing

phase relative to the baseline (LFP) oscillation and subsequently

support the phase-coded vector cell model. It is possible, there-

fore, that band cells or VCOs perform path integration and

support vector navigation, while grid cells represent the interface

between those cells and sensory information encoded by place

cells (e.g., O’Keefe andBurgess, 2005; Bush et al., 2014). Further

experiments are required to determine whether band cells or
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VCOs exist with the discrete range of spatial scales that would

be required to support vector navigation over large distances.

To conclude, we have provided a theoretical framework within

which to examine the computational problem of large-scale

vector navigation using grid cells and presented an algorithmic

solution to the problem and several biologically plausible imple-

mentations of that solution. Although the system we have

described is focused on navigation, the same procedure could

be applied to compute the displacement between any arbitrary

pair of positions in any physical or conceptual space and in

any number of dimensions. Future experiments must determine

whether mEC is needed for vector navigation and, if so, what

neurophysiological signatures it is associated with.
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Figure S1: Capacity of the Grid Cell System (see also Algorithmic Solution in 1D, Supplemental 

Experimental Procedures). The displacement 𝑑 of a location encoded by a specific combination of 

grid cell phases 𝑝𝑖  across modules must satisfy the equation 𝑑(𝑘) = 𝑠𝑖(𝑝𝑖/2𝜋 + 𝑛𝑖(𝑘))  for all 

𝑖 = 1 to 𝑀 (Equation S1), where 𝑠𝑖 is the scale of module 𝑖 and 𝑛𝑖 an integer value for that module. 

There are multiple solutions to this equation, indexed here by 𝑘, such that specific combinations of 

grid cell phases across modules correspond to multiple, periodically spaced locations along the axis. 

The capacity of the grid cell system is defined as the distance between consecutive solutions 

𝑑(𝑘 + 1) − 𝑑(𝑘) (Equation S2). If we express each grid scale 𝑠𝑖 as an integer multiple 𝑞𝑖 of the 

distance resolution of coding across modules Δ𝑠 (i.e. 𝑠𝑖 = 𝑞𝑖∆𝑠, but see Supplemental Experimental 

Procedures), then we can show that the distance between successive locations 𝑑(𝑘 + 1) − 𝑑(𝑘) is 

equal to the lowest common multiple of {𝑞𝑖} multiplied by the distance resolution ∆𝑠 (Equation S5). 

In the example shown here, 𝑀 = 2 grid cell modules with a distance resolution Δ𝑠 = 5𝑐𝑚 have 

scales of 𝑠1 = 30𝑐𝑚 and 𝑠2 = 20𝑐𝑚 (i.e. 𝑞1 = 6 and 𝑞2 = 4). When both grid modules have a phase 

of 𝑝𝑖 = 0 𝑟𝑎𝑑, (A) the first solution to Equation S1 is 𝑑(0) = 0𝑐𝑚, given by 𝑛1 = 0 and 𝑛2 = 0; (B) 

the second solution is 𝑑(1) = 60𝑐𝑚, given by 𝑛1 = 2 and 𝑛2 = 3; and (C) the third solution is 

𝑑(2) = 120𝑐𝑚, given by 𝑛1 = 4 and 𝑛2 = 6. Hence, the capacity of the grid cell system 𝑑(𝑘 + 1) −

𝑑(𝑘) = 60𝑐𝑚 which is equal to the lowest common multiple of 𝑞1 = 6 and 𝑞2 = 4, i.e. 12, 

multiplied by the distance resolution Δ𝑠 = 5𝑐𝑚. 



 

Figure S2: Simulations of the Distance Cell Model (see also Figure 5, Supplemental Experimental 

Procedures). We postulate two arrays of NDC=12500 distance cells that encode start and goal 

locations, respectively, on each of two axes �⃗� and �⃗�. Grid cells in each module project to distance 

cells with synaptic weights that are proportional to their mean firing rate at the corresponding 

location on that axis (Figure 5A). The number of spikes fired by NGC=400 grid cells, representing 

mi=20 equally distributed spatial phases 𝑝𝑖  along each axis, is given by a Poisson process with a rate 

function that is cosine tuned for location along that axis (Equation S6) and a time window of 100ms. 

Distance cells in each array are subject to winner-take-all dynamics, and all distance cells in each 

array project to a pair of read-out cells with synaptic weights that increase topographically in 

different directions along each axis (Figure 5B). Hence, the relative firing rate of those read-out cells 

encodes the displacement between start and goal locations along that axis. (A) The difference in 

read-out cell firing rates (collapsed across both principal axes) plotted against the true translation 

vector for N=1000 simulations with randomly assigned start and goal locations in a 500m sided 2D 

arena (see Experimental Procedures). This illustrates that translation vectors can be accurately 

decoded from the relative firing rate of read-out cells. (B) The distribution of errors in 2D translation 

vector lengths decoded from the relative firing rate of read-out cells across the same N=1000 

simulations. Note that distance cells were given a resolution of 4cm in these simulations. (C) Total 

decoded 2D translation vector lengths plotted against decoding error. This demonstrates that there 

is no correlation (r=0.017, p=0.60) between the length of translation vectors and the decoding error, 

as the spatial resolution of distance cells is even across the entire 2D arena.  



 

Figure S3: Simulations of the Rate-coded Vector Cell Model (see also Figure 6, Supplemental 

Experimental Procedures). We postulate two arrays of NVC=1250 vector cells that encode the 

displacement between start and goal locations in either direction along each of two axes �⃗� and �⃗�. 

Vector cells receive input from grid cell pairs within each module whose unwrapped phase 

difference corresponds to that absolute vector on that axis through multiplicative synapses (Figure 

6A). The number of spikes fired by NGC=400 grid cells, representing mi=20 equally distributed spatial 

phases 𝑝𝑖  along each axis, is given by a Poisson process with a rate function that is cosine tuned for 

location along that axis (Equation S6) and a time window of 100ms. Vector cells in each array are 

subject to winner-take-all dynamics, and translation vectors are directly decoded from the weighted 

mean of vector cell activity. Translation vectors are calculated iteratively, with the start location 

updated by 80% of the total decoded vector length along each axis prior to each new calculation, 

until the start location is within 1m of the true goal. (A) Pseudo-exponential distribution of 

translation vectors encoded by vector cells. (B) The distribution of translation vector errors decoded 

in the final iterative step from the activity of vector cells across N=1000 simulations with randomly 

assigned start and goal locations in a 500m sided 2D arena (see Experimental Procedures). (C) Total 

decoded 2D translation vector lengths plotted against decoding error in the first iterative step. This 

demonstrates that there is a significant correlation (r=0.61, p<0.001) between the length of 

translation vectors and initial decoding error, as the spatial resolution of vector cells decreases with 

increasing encoded displacement (Figure S3A). 



 

Figure S4: Simulations of the Phase-coded Vector Cell Model (see also Figure 7, Supplemental 

Experimental Procedures). We postulate two populations of grid cells that exhibit phase precession 

aligned with specific non-collinear axes (Figure 7A, B); and that only the grid cells within each 

module which exhibit the maximum rate at the goal location are reactivated, firing one spike within 

a single ttheta=100ms at a theta phase consistent with the current location. (A) Theta firing phases are 

drawn from a circular normal distribution with a mean that is linearly correlated with the distance 

(modulo grid scale) between the peak of that grid cell’s firing field and the current location along the 

axis of phase precession (Equation S7) and a circular standard deviation of 𝜇 = 𝜋
6⁄  rad (compare to 

Figure 7A). (B) Grid cells project to vector cells through delay lines with transmission delays which 

ensure that spikes from grid cells encoding the goal location across modules arrive simultaneously at 

the corresponding vector cell (Equation S8). The activity of vector cells is determined by the 

temporal proximity of incoming spikes, i.e. vector cells perform temporal coincidence detection on 

the inputs that arrive from grid cells through delay lines. Vector cells in each array are subject to 

winner-take-all dynamics, and translation vectors can be directly decoded from the weighted mean 

of vector cell activity. Translation vectors are calculated iteratively, with the start location updated 

by 80% of the total decoded vector length along each axis prior to each new calculation, until the 

start location is within 1m of the true goal. (C) The distribution of translation vector errors decoded 

in the final iterative step from the activity of vector cells across N=1000 simulations with randomly 

assigned start and goal locations in a 500m sided 2D arena (see Experimental Procedures). (D) Total 

decoded 2D vector lengths plotted against decoding error in the first iterative step. This 

demonstrates that there is a significant correlation (r=0.66, p<0.001) between the length of 

translation vectors and initial decoding error, as the spatial resolution of vector cells decreases with 

increasing encoded displacement (Figure S3A). 



 

Figure S5: Simulations of the Linear Look-ahead Model (see also Figure 8, Supplemental 

Experimental Procedures). Linear look ahead activity is initiated by setting grid cell firing rates in 

each module to match those at the start location and then updating those firing rates in each 

subsequent 5ms time step according to simulated movement away from the current location at a 

constant speed of 8ms-1 along a specific directional axis. Grid cells in each module project to an array 

of place cells that evenly cover the 2D arena with synaptic weights that are proportional to their 

mean firing rate at the centre of the place field, and place cells are subject to winner-take-all 

dynamics. The time taken for grid cells encoding the goal location across modules to become 

simultaneously active, or the firing rate of a neuron that integrates total activity in the grid cell 

network during linear look ahead, subsequently encodes the displacement between start and goal 

locations along that axis (Figure 8A). This is indicated by activity in the corresponding place cell. The 

number of spikes fired by NGC=400 grid cells, representing mi=20 equally distributed spatial phases 𝑝𝑖  

along each axis, is given by a Poisson process with a rate function that is cosine tuned for location 

along that axis (Equation S6). Overall translation vectors in 2D are constructed from linear look 

ahead in each direction along two non-collinear axes. (A) The distribution of decoding errors across 

N=1000 simulations with randomly assigned start and goal locations in a 500m sided 2D arena. (B) 

Total decoded 2D translation vector lengths plotted against decoding error. This demonstrates that 

there is no correlation (r=0.017, p=0.60) between the length of translation vectors and the decoding 

error, as place cell firing fields evenly cover the entire 2D arena. (C) The time taken to decode 

translation vectors along each axis (i.e. the length of each linear look ahead event) is determined by 

the displacement between start and goal locations along that axis.   



Supplemental Experimental Procedures 

Capacity of the Grid Cell System 

We can calculate the capacity of the grid cell system within our formalism (following Fiete et al., 

2008). If we consider multiple distinct solutions 𝑑(𝑘) that satisfy Equations 1 and 2 for different sets 

of integer values 𝑛𝑖(𝑘), where 𝑖 = 1 to 𝑀, then from Equation 1 (or Figure 4A) we have:    

𝑑(𝑘) = 𝑠𝑖(𝑝𝑖/2𝜋 + 𝑛𝑖(𝑘)) for all 𝑖 = 1 to 𝑀  

[Equation S1] 

The distance between adjacent solutions is:  

𝑑(𝑘 + 1) − 𝑑(𝑘) = 𝑠𝑖(𝑛𝑖(𝑘 + 1) − 𝑛𝑖(𝑘)) for all 𝑖 = 1 to 𝑀 

[Equation S2] 

If we express 𝑠𝑖 in integer multiples {𝑞𝑖} of the distance resolution of coding within each grid module 

(i.e. the minimum distinguishable distance, Δ𝑠, which we assume to be constant across modules, but 

see below), so that 𝑠𝑖 = 𝑞𝑖∆𝑠, then: 

(𝑑(𝑘+1)−𝑑(𝑘))

∆𝑠
= (𝑛𝑖(𝑘 + 1) − 𝑛𝑖(𝑘))𝑞𝑖 for all 𝑖 = 1 to 𝑀 

[Equation S3] 

If there are no common factors in {𝑞𝑖}, where 𝑖 = 1 to 𝑀, then Equation S3 requires that: 

(𝑛𝑖(𝑘 + 1) − 𝑛𝑖(𝑘)) = ∏ 𝑞𝑗𝑗    for 𝑗 = 1 to 𝑀, 𝑗 ≠ 𝑖 

[Equation S4] 

so that: 

𝑑(𝑘 + 1) − 𝑑(𝑘) = ∆𝑠 ∏ 𝑞𝑗𝑗   for 𝑗 = 1 to 𝑀 

[Equation S5] 

Thus the separation between consecutive ambiguous solutions is the product of the grid scales in 

units of the minimum distinguishable distance in a grid module (unless there are common factors in 

{𝑞𝑖}, in which case the separation is equal to the least common multiple of grid scales; see Fiete et 

al., 2008), and displacements within this range are encoded unambiguously. As a consequence, grid 

scales should avoid common factors, or the separation between ambiguous solutions will be 

correspondingly reduced (for further discussion, see Mathis et al., 2012, 2013; Towse et al., 2014). 

However, a fixed distance resolution across modules seems unlikely, assuming that neurons in 

different modules have common biophysical properties and given the apparently greater number of 

grid cells with small rather than large scales (Stensola et al., 2012). A more realistic assumption 

would be a fixed phase resolution across modules (i.e. distance resolution is proportional to grid 

scale, ∆𝑠𝑖 ∝ 𝑠𝑖), in which case Fiete et al. (2008) show that capacity has a similar exponential 

dependence on the number of modules M.  



Neural Network Simulations 

In all simulations, locations are encoded by M=10 grid cell modules whose spatial scales are 

arranged in a geometric progression (i.e. 𝑠𝑖 = 𝑠𝑀𝛼𝑀−𝑖) with a minimum grid scale of s10=25cm and a 

common factor of α=1.4 (giving a maximum grid scale of ~5m). Each module consists of NGC=400 grid 

cells distributed evenly among mi=20 equally distributed spatial phases 𝑝𝑖. We note that the exact 

distribution of grid scales has no effect on the simulations presented here, aside from determining 

the capacity of the grid cell system to encode unique locations (Fiete et al., 2008; Mathis et al., 2012; 

Wei et al., 2013; Towse et al., 2014; see 'Capacity of the Grid Cell System' above) and the ability of 

the grid cell system to deal with neural noise (Sreenivasan and Fiete, 2011; Mathis et al., 2013).  

For each model, translation vectors are decoded for N=1000 randomly assigned current and goal 

locations in a 2D arena. These locations are constructed from randomly assigned displacements 

along two 500m principal axes of that arena. For simplicity, these axes are oriented at �⃗� = 0° and 

�⃗� = 60° to match the principal axes of the grid pattern. We note that the size of this arena is 

significantly less than the capacity of this grid cell network to encode locations with a unique set of 

grid cell phases across modules. Using the formalism above and a distance resolution across 

modules of ∆𝑠 = 0.4𝑚, which represents the maximum accuracy with which distances can be 

resolved from noisy grid cell firing in the largest grid module alone, we estimate a capacity of ~3.3km 

for the grid cell system examined here.  

In all rate-coded simulations, the firing of grid cells is modelled as a Poisson process with a rate 

function rj,i that exhibits cosine tuning for location a in module i along each principal axis uj and a 

maximum rate rmax=30Hz (Equation S6): 

𝑟𝑗,𝑖(𝑎) = 𝑟𝑚𝑎𝑥

1 + cos ([
𝑎 − 𝑠𝑖 (

𝑝𝑗,𝑖

2𝜋
)

𝑠𝑖
] × 2𝜋)

2
 

[Equation S6] 

All Matlab code used to perform these simulations is available on ModelDB 

(http://modeldb.yale.edu/182685).  

The Distance Cell Model 

In distance cell simulations, distance cells encode current or goal locations in allocentric space along 

the principal axes �⃗� and �⃗� (Fiete et al., 2008; Huhn et al., 2009). Two distance cell arrays (one for 

each of the principal axes �⃗� and �⃗�) receive input from a population of grid cells whose firing rates 

encode the current location, and two separate distance cell arrays (one for each of the principal axes 

�⃗� and �⃗�) receive input from a population of grid cells whose firing rates encode the goal location. It 

has been suggested that distance cells may correspond to place cells in the dentate gyrus (DG; Huhn 

et al., 2009), which significantly outnumber those in the CA3 and CA1 subfields (~1x106 granule cells 

in rat DG and ~2.5x105 pyramidal cells in rat CA3 or CA1; Amaral and Lavenex, 2007) and whose 

properties have not been well characterised (Jung and McNaughton, 1993). However, distance cells 

in this model exhibit a band-like firing pattern, as they encode a series of allocentric locations along 

a specific 1D axis with a spatial periodicity equal to the capacity of the grid cell system. 

http://modeldb.yale.edu/182685


Grid cells project to distance cells in each array with synaptic weights that are proportional to their 

mean firing rate at the allocentric location a encoded by that distance cell on the directional axis �⃗� 

or �⃗�, i.e. 𝑤𝐷𝐶,𝐺𝐶 ∝ 𝑟𝑗,𝑖(𝑎) (Figure 5A; Equation S6), analogous to models of the grid cell to place cell 

transformation (Rolls et al., 2006; Solstad et al., 2006). The number of spikes fired by each grid cell is 

dictated by a Poisson process with a cosine tuned rate function (Equation S6) and a time window of 

100ms. 

Distance cells have a spatial resolution of 0.04m to give NDC=12500 distance cells in each of the four 

arrays (corresponding to current and goal locations on the two axes �⃗� and �⃗�), or a total of 50000 

distance cells overall. Distance cells within each array are subject to winner-take-all dynamics 

implemented with an E%-max algorithm, such that cells only fire if their input is within k=1% of the 

maximum feed-forward excitation (de Almeida et al., 2009). Activity within each distance cell array is 

then normalised, such that the integrated activity across all distance cells within each 100ms time 

window is consistent across simulations.  

Synaptic weights between each pair of (current and goal location) distance cell arrays and two read-

out neurons for each principal axis �⃗� or �⃗� increase linearly in opposing directions along 

topographically ordered distance cells (Figure 5B). Hence, the relative firing rate of these two read-

out neurons encodes the displacement between current and goal locations on that axis. The 

magnitude of translation vectors on each principal axis is decoded by fitting a line of regression to a 

plot of the difference in the firing rate of read-out cells against the true displacement vector along 

that axis across all N=1000 iterations (Fig S2A). We note that these putative read-out cells require 

both a very large and highly precise range of firing rates to represent planned trajectories, and this 

function might more easily be supported by populations of read-out cells.  

Simulations demonstrate that the distance cell model can decode translation vectors between 

arbitrary current and goal locations in large-scale 2D space within a 100ms time window with a 

mean accuracy of <4cm (Fig S2B). Importantly, there is no correlation between the magnitude of the 

vector and the error with which it is decoded (r=0.017, p=0.60, Fig S2C), as distance cells evenly 

cover the arena.  

The Vector Cell Models 

In vector cell simulations, separate populations of vector cells decode the displacement between 

arbitrary start and goal locations in each direction along the principal axes �⃗� and �⃗�. The spatial 

resolution of vector cells is pseudo-exponentially distributed in the 0 : 500m range (Fig S3A) to give a 

total of NVC=1250 vector cells in each of four arrays (corresponding to each direction of movement 

along the two principal axes �⃗� and �⃗�), or a total of 5000 vector cells overall. This is an order of 

magnitude smaller than the additional number or cells required by the distance cell model (see 

above), as the need for an intermediate representation of absolute location is eliminated. In turn, 

this allows the spatial resolution of vector cells to be reduced for greater encoded displacements, as 

translation vectors can be dynamically recalculated with increasing accuracy as the goal is 

approached (see also Erdem and Hasselmo, 2014). We note that this does not reduce the capacity of 

the grid cell system, it merely allows that capacity to be under-sampled at greater distances from the 

current location. 



In these simulations, for each pair of N=1000 arbitrary start and goal locations, the current location 

is updated by 80% of the decoded vector length along each axis in each step, and then translation 

vectors are iteratively re-calculated, until the current location is within 1m of the true goal. In each 

step, vector cells within each pair of arrays encoding displacements along a single axis are subject to 

winner-take-all dynamics implemented with an E%-max algorithm, such that cells only fire if their 

input is within k=1% of the maximum feed-forward excitation (de Almeida et al., 2009). The overall 

translation vector is decoded by combining the average of all active vector cells along each axis �⃗� or 

�⃗�, weighted by their firing rate.  

In rate-coded vector cell simulations, each pair of vector cell arrays that encode displacement in 

either direction along the principal axis �⃗� or �⃗�  receive input from a population of grid cells that 

encodes start and goal locations on that axis. Vector cells receive input from grid cell pairs within 

each module whose unwrapped phase difference corresponds to that absolute vector on that 

directional axis through multiplicative synapses, such that activity only reaches the vector cell if both 

grid cells in a start-goal pair are active (Figure 6A). The number of spikes fired by each grid cell in 

each step is dictated by a Poisson process with a cosine tuned rate function (Equation S6) and a time 

window of 100ms. 

Simulations demonstrate that the rate-coded vector cell model can decode translation vectors 

between arbitrary current and goal locations in large-scale 2D space with a mean accuracy of <4cm 

(Fig S3B). These translation vectors are decoded rapidly, in the minimum possible number of 

iterative 100ms steps in all simulations (mean = 3.83 steps, range of 2-4 steps). The magnitude of 

error in the translation vector decoded in the first step correlates with the length of that vector 

(r=0.61, p<0.001; Fig S3C), due to the decrease in vector cell precision for greater vector lengths, 

while no such relationship is observed for the distance cell model (Fig S2C).  

In phase-coded vector cell simulations, pairs of vector cell arrays that encode displacement in either 

direction along the principal axis �⃗� or �⃗� receive input from separate populations of grid cells that 

exhibit phase precession aligned with each axis. Only the grid cells within each module 𝐺𝐶𝑏 that 

exhibit the maximum firing rate at the goal location b fire within a single ttheta=100ms theta cycle. 

Their theta firing phase is drawn from a circular normal distribution with a mean ∅�̅� that is linearly 

correlated with the circular distance between the peak of that grid cell’s firing field b and the current 

location a along that axis (Equation S7) and a circular standard deviation of 𝜇 = 𝜋
6⁄  rad (Figure 

S4A).  

∅�̅�(𝐺𝐶𝑏) = 2𝜋
𝑚𝑜𝑑(𝑏 − 𝑎, 𝑠𝑖)

𝑠𝑖
 

[Equation S7] 

In these simulations, vector cells must be sensitive to specific spike timing input patterns, analogous 

to models of polychronous computation (Jeffress, 1948; Hopfield, 1995; Izhikevich, 2006). For 

simplicity, this is achieved by grid cells in each module projecting to vector cells through delay lines 

with transmission delays ti that are proportional to the difference between the grid scale si and the 

encoded vector d according to Equation S8 (Figure S4B). The activity of each vector cell is then taken 

as the resultant vector length of input spike phases from grid cells encoding the goal location in all 

modules. 



𝑡𝑖(𝑑) =
𝑚𝑜𝑑(

𝑠𝑖
2

− 𝑑, 𝑠𝑖)

𝑠𝑖
𝑡𝑡ℎ𝑒𝑡𝑎 

[Equation S8] 

Simulations demonstrate that the phase-coded vector cell model can decode translation vectors 

between arbitrary current and goal locations in large-scale 2D space with an accuracy of <4cm (Fig 

S4C). These translation vectors are decoded rapidly, in the minimum number of iterative 100ms 

steps in all simulations (mean = 3.82 steps, range of 2-4 steps).  Again, the magnitude of error 

correlates with the size of decoded vectors (r=0.66, p<0.001; Fig S4D), due to the decrease in vector 

cell precision for greater vector lengths, while no such relationship is observed for the distance cell 

model (Fig S2C).  

We note that there is little empirical evidence for the existence of delay line connectivity of the kind 

employed here in cortex (but see McKenzie et al., 2014). However, the same functionality could be 

achieved by dendritic integration that allows the sequence and relative timing of inputs to be 

discriminated (Branco et al., 2010; Vaidya and Johnston, 2013). Interestingly, differences in theta 

phase and ionic conductances along the dendrite could affect the integration of inputs at the soma 

to make hippocampal pyramidal neurons sensitive to the relative timing and distribution of their 

inputs (Bullock et al., 1990; Vaidya and Johnston, 2013). It is important to note that this model is 

insensitive to the actual underlying oscillatory frequency against which phase precession occurs, so 

that a more realistic time constant of dendritic integration (i.e. <10ms) could be used if phase 

precession transiently occurred against a higher frequency oscillation. Moreover, the model does 

not rely on linear phase precession, or on phase precession covering the full range of 2𝜋 radians - 

any constant, monotonic relationship between position and theta firing phase is sufficient to support 

the decoding of translation vectors. 

One experimental prediction of the phase-coded vector cell model is the existence of separate 

populations of grid cells that exhibit phase precession along specific 1D axes. Phase precession has 

been best characterised for non-directional grid cells and corresponds to distance travelled through 

the firing field irrespective of direction (Hafting et al., 2008; Reifenstein et al., 2012; Climer et al., 

2013; Jeewajee et al., 2014). However, a subpopulation of conjunctive head-direction modulated 

grid cells in the deeper layers of mEC do show reliable theta phase precession (Hafting et al., 2008; 

Newman and Hasselmo, 2014; Reifenstein et al., 2014) which might serve this purpose (but see 

Climer et al., 2013). 

The Linear Look Ahead Model 

In the linear look ahead model, four linear look ahead events are required to compute translation 

vectors between arbitrary start and goal locations in 2D space, corresponding to the sequential 

exploration of each direction along the two principal axes �⃗� and �⃗�. During each linear look ahead 

event, activity is initiated by setting grid cell firing rates in each module to match those at the start 

location and then updating grid cell firing in each subsequent time step according to simulated 

movement away from the current location at a constant speed along that directional axis.  

The distance between start and goal locations in either direction along each principal axis is decoded 

from the time elapsed between the initiation of linear look ahead activity and firing activity in the 



place cell encoding the goal location. This could be encoded by the firing rate of a cell that integrates 

total activity in a single grid cell module, or the grid cell system as a whole, over the course of that 

linear look ahead event (for a similar proposal during active navigation, see Kubie and Fenton, 2009). 

Some layer II mEC cells are known to exhibit bistable persistent spiking, such that their firing rate 

reflects a stable integral of the depolarisation reaching the cell (Klink and Alonso, 1997; Egorov et al., 

2002; Fransen et al., 2006). 

Overall translation vectors in 2D space are constructed by combining the decoded distances and 

direction along each of the principal axes. We note that the principal axes along which linear look 

ahead is performed need not be consistent between events, nor must the same axes be explored in 

either direction – any set of non-collinear, directional axes that are sufficient to triangulate an 

arbitrary location in 2D space will suffice. Moreover, as linear look ahead events are carried out 

sequentially, these could correspond to successive head directions of the animal during scanning 

behaviour. 

In these simulations, we set a time step dt=5ms that corresponds to the integration time constant of 

a post-synaptic neuron – that is, grid cells across modules that fire within a 5ms time window 

encode a single location that can be decoded by an output place cell. We then set a constant, virtual 

speed for linear look ahead events of vsweep=8ms-1 (Davidson et al., 2009), which subsequently 

determines the distance increment between each integration time step and therefore the spatial 

resolution of output place cells (0.04m in this case). Synaptic weights between grid cells and place 

cells are proportional to the grid cell firing rate at the peak of the place cell firing field along the axis 

�⃗� or �⃗�, i.e. 𝑤𝐷𝐶,𝐺𝐶 ∝ 𝑟𝑗,𝑖(𝑎) (Equation S6). The number of spikes fired by each grid cell in each time 

step is dictated by a Poisson process with a cosine tuned rate function (Equation S6) and the time 

window of dt=5ms. Activity within each place cell array is subject to winner-take-all dynamics 

implemented with an E%-max algorithm such that cells only fire if their input is within k=1% of the 

maximum feed-forward excitation (de Almeida et al., 2009).  

Simulations demonstrate that the linear look ahead model can decode translation vectors between 

arbitrary current and goal locations in 2D space with an accuracy of <4cm (Fig S5A). Like the distance 

cell model, there is no correlation between the magnitude of the vector and the error with which it 

is decoded (r=0.017, p=0.60, Fig S5B), as the firing fields of output place cells evenly cover the arena. 

However, the time taken to decode translation vectors is correlated with their magnitude, and can 

be an order of magnitude larger than the direct decoding models (Fig S5C). For example, linear look 

ahead at a constant speed of vsweep=8ms-1 takes approximately one minute to decode a single 500m 

vector, and four of these linear look ahead events, corresponding to independent searches in each 

direction along two non-collinear axes, are required to compute a 2D translation vector. It is possible 

to increase the speed of linear look ahead activity, but at the cost of precision, as a broader 

population of grid cells fire within each integration time window. Moreover, the capacity of the grid 

cell system will be reduced if smaller scales can no longer contribute to encoding distinct locations, 

as will occur if all grid cells in those modules fire within the time window of post-synaptic 

integration. Similarly, if the distance to the goal is not known a priori, then the speed of linear look 

ahead activity cannot be tailored to match the scale of the decoded vector (but see Erdem and 

Hasselmo, 2014).  



We note that linear look ahead activity in the grid cell network is phenomenologically similar to 

hippocampal replay and preplay events, during which trajectories often originate close to the animal 

and travel coherently through space (Foster and Wilson, 2006; Davidson et al,. 2009; Pfeiffer and 

Foster, 2013). However, preplay trajectories in place cells also appear to move directly towards 

future goals (Pfeiffer and Foster, 2013; Olafsdottir et al., 2015), which requires a priori knowledge of 

the direction towards those locations. Hence, it is possible that the planning of a complete 

navigational trajectory using linear look ahead might take place in two stages. First, linear look 

ahead in grid cells could be used to compute a direct vector to the goal location. During this period, 

place cell read-out activity would be driven by grid cell firing and used to ascertain the point at which 

grid cells encoding the goal location across modules became simultaneously active. Next, preplay 

activity in place cells could be used to sequentially check the sensory attributes of each location 

along that direct vector, in order to identify any potential hazards or impediments to navigation. 

During this period, place cell preplay activity would resemble a trajectory moving directly away from 

the current location towards, and terminating at, the goal (Pfeiffer and Foster, 2013; Olafsdottir et 

al., 2015). We note that this latter stage could also be used to simulate the sensory content of 

planned trajectories after a translation vector was computed from grid cell representations using 

any of the direct decoding models, and would be consistent with experimental indications that sharp 

wave/ripple (SWR) dynamics originate in the recurrent collaterals of CA3 (Chrobak and Buzsaki, 

1996; Sullivan et al., 2011). 
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