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Neil Burgess,4,5 and Christian F. Doeller1,*
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
2Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
3Research Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
4UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AZ, UK
5UCL Institute of Neurology, Queen Square, London WC1 3BG, UK

*Correspondence: ben.steemers@nih.gov (B.S.), christian.doeller@donders.ru.nl (C.F.D.)
http://dx.doi.org/10.1016/j.cub.2016.04.063
SUMMARY

Memories are thought to be retrieved by attractor dy-
namics if a given input is sufficiently similar to a
stored attractor state [1–5]. The hippocampus, a re-
gion crucial for spatial navigation [6–12] and episodic
memory [13–18], has been associated with attractor-
based computations [5, 9], receiving support from
the way rodent place cells ‘‘remap’’ nonlinearly be-
tween spatial representations [19–22]. In humans,
nonlinear response patterns have been reported in
perceptual categorization tasks [23–25]; however, it
remains elusive whether human memory retrieval
is driven by attractor dynamics and what neural
mechanisms might underpin them. To test this, we
used a virtual reality [7, 11, 26–28] task where partic-
ipants learned object-location associations within
two distinct virtual reality environments. Participants
were subsequently exposed to four novel intermedi-
ate environments, generated by linearly morphing
the background landscapes of the familiar environ-
ments, while tracking fMRI activity. We show that
linear changes in environmental context cause linear
changes in activity patterns in sensory cortex but
cause dynamic, nonlinear changes in both hippo-
campal activity pattern and remembered locations.
Furthermore, the sigmoidal response in the hippo-
campus scaled with the strength of the sigmoidal
pattern in spatial memory. These results indicate
that mnemonic decisions in an ambiguous novel
context relate to putative attractor dynamics in the
hippocampus, which support the dynamic remap-
ping of memories.

RESULTS

Participants gave written consent and were paid for partici-

pating, as approved by the local Research Ethics Committee

(CMO region Arnhem-Nijmegen, the Netherlands). To create sta-

ble object-place memories, we let participants extensively learn
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the locations of four objects in two virtual environments (environ-

ment A and F; Figure 1) over the period of 2 days, while feedback

about the correct object position was provided at the end of

each trial. Performance was measured as the distance error in

object replacement as a fraction of arena width. Throughout

the two training sessions, participants’ performance increased,

reaching ceiling levels on day 2 (Figure S1A). Performance did

not differ between the two environments at the end of training

(t19 = 1.19, p = 0.25; see Figure S1).

After training, and while lying in the MRI scanner, participants

were required to perform the same behavioral task in four

novel ‘‘morph’’ environments (B through E) in addition to the

known environments A and F. Crucially, the backgrounds, which

distinguished the environments, varied linearly from A to F

(e.g., B = 80% 3 A + 20% 3 F, C = 60% 3 A + 40% 3 F, etc.;

Figure 1B). Unknown to the participants, transitions between

environments were introduced during inter-trial intervals. Partic-

ipants were not informed about the environmental manipulation

and did not receive feedback during this session. Environments

were presented in a random order (Supplemental Experimental

Procedures).

To formally assess the behavioral response profile, we looked

at the relative differencebetween theobject replacement location

and the true object location in environments A (DA) and F (DF),

expressed as DA/(DA + DF). This behavioral similarity measure

scales linearly from 0 to 1 with increasing DA and decreasing

DF, reflecting the ‘‘A-ness’’ and ‘‘F-ness’’ of each memory

response (Figure 1A). We used maximum likelihood estimates

(MLE) to fit this measure to (1) a sigmoidal model indicative of

putative attractor dynamics and (2) a linear control model repre-

senting the visual change in environments A to F, with model

complexity heldconstant (bothmodelshave two freeparameters;

Supplemental Experimental Procedures). The similarity measure

indeed followed a sigmoidal rather than a linear model (paired

t test on the resulting residual sum of squares [RSS], t19 = 4.62,

p < 0.001; Figure 1D), with the sigmoid centered between

environments C and D in the majority of participants (15 out

of 20; Figure 1E). On the other hand, memory confidence,

measured on a five-point scale after each trial, scaled linearly

with difference from either baseline environment in 87% of

participants (Figure 1D). A behavioral control experiment, where

naive participants judged the similarity between the background

cues, showed that the sigmoidal memory response pattern was
td.
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Figure 1. Memory Performance in the Virtual

Reality Task

(A) Participants learned the locations of four objects

in two environments (A and F); the duck depicts an

example object. Subsequently, they ‘‘replaced’’ the

objects in environments A and F and in morphed

environments B, C, D, and E. For every trial, the

distance of replacement locations (illustrated by

‘‘X’’ in the example of environment C) from the

object’s positions in A (DA, see red duck) and F (DF,

see blue duck) was measured.

(B) Morph sequence of background cues. Morph-

ing A into F was achieved by changing the contri-

bution of the height maps of the mountains in the

background from environment A to F in a linear

fashion.

(C) In each trial, participants were cued with one of

the objects, then navigated to the remembered

object location, and placed the object by a button

press (response). Feedback was given by showing

the object in its correct location (only in the training

phase).

(D) Left: the relative sizes of DA and DF (see A,

expressed as DA/(DA + DF)) was taken as a

behavioral expression of the similarity of any envi-

ronment to the base environments A and F. This

behavioral similarity measure is plotted separately

for the different environments (averaged across

trials and participants, ±SEM) along with sigmoid

and linear model fit curves. Middle: bars show

model fits (residual sum of squares [RSS], between

model and data, ±SEM) separately for bothmodels.

The sigmoid model fits the data better than the

linear model (t19 = 4.62, p < 0.001). Right: mean

confidence (averaged across participants ± SEM)

is plotted for each environment. ANOVA shows a

significant effect of environment on confidence

(F(5,70) = 10.92, p < 0.001).

(E) Left: the relative difference between the drop

error in environment A (DA) and F (DF), expressed

as DA/(DA+DF), is plotted per environment (aver-

aged across trials), separately for each participant.

Middle: mean derivatives between the responses

from panel (D) between subsequent environments

are plotted. The derivatives differ significantly

(F(4,76) = 53.6, p < 0.001) and peak between envi-

ronment C and D. Right: the highest average slope

of linear fits on DA/(DA+DF) between neighboring

environments is observed in most participants be-

tween environment C and D. For performance

during the training phase, see Figure S1.
not due to differences in the perception of the backgrounds,

which were judged to differ in a linear rather than a sigmoidal

fashionalong themorphsequence (t15 = 4.61,p<0.001; Figure 2).
Current
If the sigmoidal behavioral pattern re-

flects putative attractor dynamics in brain

activity, we would expect a similar sig-

moidal transition in the similarity of the

multi-voxel activity patterns for the morph

environments compared to the two base-

line environments [29]. Since the offset of

the sigmoids fitted to behavioral data

differed between participants (see Fig-
ure 1E), we used each participant’s behavioral response pattern

to predict the similarities in multi-voxel activity patterns between

pairs of environments, akin to population vector analyses of
Biology 26, 1750–1757, July 11, 2016 1751



A

C

B Figure 2. Perception of Environment-Spe-

cific Background Independent of Virtual

Navigation

(A) Trial structure of follow-up behavioral experi-

ment. 16 naive participants scored the similarity

between pairs of background images on a five-

point scale. These were the same images used to

make distinguishable backgrounds in the 3D

navigation task but now presented 2D.

(B) Naive similarity judgments for each environ-

ment to either environment A (DA) or environment

F (DF), expressed as DA/(DA+DF), are plotted,

along with linear and sigmoidal model fits (aver-

aged across participants ± SEM).

(C) The measure DA/(DA+DF) was fitted to a linear

and perfect sigmoid model using MLE, and the

resulting RSS are shown (±SEM). Comparison of

the residuals revealed that the linear model shows

a significantly better fit than the sigmoidal model

(paired t test t15 = 4.61, p < 0.001).
place cell firing [20] (Supplemental Experimental Procedures).

We correlated the actual multi-voxel patterns for each environ-

ment-by-environment combination and tested this against the

aforementioned prediction models using general linear modeling

(GLM) (Figure 3A). We found a response pattern following the

sigmoidal prediction obtained from each participant’s behavioral

response function in a hippocampal region of interest (ROI; peak

coordinates x =�31, y =�26, z =�7, peak Z = 3.10 uncorrected;

bootstrap corrected p = 0.036; see Figure 3B and Supplemental

Experimental Procedures for details). The sigmoidal effect in the

hippocampus was strongest for responses with high memory

confidence (Figure 3D). No effect was found in the hippocampus

for a linear model, even at a lenient uncorrected threshold of

p < 0.01. In contrast, a linear, but not a sigmoidal, response

pattern was observed in visual cortex (x = �8, y = �79, z = 11;

peak Z = 3.91 uncorrected; bootstrap corrected p < 0.01; Fig-

ure 3C; no region outside visual cortex showed a significant

linear effect at bootstrap-corrected p < 0.05). Additional control

analyses demonstrated that the sigmoidal effect in the hippo-

campus was not due to differences in navigational behavior

across environments (Figures S2A and S2B), differences in

mean hippocampal blood-oxygen-level-dependent (BOLD)

signal across environments (Figure S2C), or an effect of the

similarities of behavioral response trajectories when the same

object was placed across environments (Figure S3A). Finally, a

consistent sigmoidal or linear response pattern was absent in

the perirhinal cortex, entorhinal cortex, and parahippocampal

cortex (Figure S3B), making it unlikely that our hippocampal

observation is the net result of putative extrahippocampal attrac-

tor dynamics within the medial temporal lobe.

In sum, these results indicate that the neural activity pattern in

the hippocampus follows nonlinear dynamics matching the

behavioral response pattern. However, the presence of a

sigmoidal response pattern in brain and behavioral data does

not unambiguously imply that both adhere to putative attractor

dynamics to a corresponding degree. To test this, we assessed

the strength of the sigmoidal response profile in behavioral and

fMRI data separately by fitting a ‘‘perfect,’’ canonical, sigmoidal

model using GLM to both datasets (i.e., a step function predict-

ing immediate transition between A and F states; see Fig-
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ure S4A). The resulting t values for both types of data, obtained

per participant, were correlated across participants (Figure S4B).

Significant correlation was seen again in the hippocampus (peak

coordinates x = �29, y = �15, z = �19; peak Z = 3.79 uncorrec-

ted; bootstrap corrected p = 0.002; Figures 4A and 4B) for the

perfect sigmoidal model, but the effect was absent for the linear

model (even at a lenient threshold of p < 0.01, uncorrected).

Importantly, an additional within-trial analysis showed that the

ratio between linear and sigmoidal fit systematically changed be-

tween the early and the late phases of trials, reflecting a dynamic

shift to a dominantly sigmoidal fit toward late trial phases (linear

regression: slope = 0.004, p < 0.005; Figure 4C). Furthermore,

Monte-Carlo simulations showed that the linear model outper-

forms the sigmoidal model on randomly shuffled data (Kolmo-

gorov-Smirnov test: p < 0.001; Figure 4D; Supplemental Exper-

imental Procedures). Finally, additional post hoc analyses further

suggest that the behavioral and fMRI responses are both clus-

tered around environment A or F representations (Figure 4F),

indicative of a concurrent sigmoidal pattern in behavior and neu-

ral data.

DISCUSSION

Our data show that memory retrieval in ambiguous novel situa-

tions is associated with nonlinear dynamics in the hippocampus,

the brain’s key region for episodic and spatial memory [7, 9,

13–18, 28–30], corroborating predictions of attractor-based

computational models of memory [1–4]. Our findings also dove-

tail with recording work in the hippocampus [20, 22] by demon-

strating a nonlinear response pattern in the hippocampus as a

function of linearly changing input. Furthermore, the sigmoidal

response pattern in the hippocampus (1) was predominant

in trials in which participants had high confidence in their mem-

ory response and (2) scaled with the strength of the sigmoidal

pattern in behavior across participants. Thus, the current

findings shed new light on the behavioral relevance of these

hippocampal computations. That is, we demonstrate that the

divergence of orthogonal, competing representations in the hip-

pocampus directly translates into mnemonic decisions, indica-

tive of putative attractor dynamics [13, 17, 18, 31–35].



A

B

C D

Figure 3. Sigmoidal Response Pattern in the Hippocampus

(A) Schematic of analysis logic: behavioral similarity to baseline environments (see example in top left panel) was used to generate predictor matrices for all

environment pairs (top right). Multi-voxel patterns in a searchlight analysis (bottom left; see Supplemental Experimental Procedures) were correlated between

trials creating a data matrix (bottom right), which was tested against the predictor matrix using GLM (see Figure S4A).

(B) Results from the behaviorally informed sigmoidal and the linear prediction model restricted to hippocampal region of interest; bars show the average effect

size in the hippocampus peak ± SEM (x =�31, y =�26, z =�7; bootstrap corrected p < 0.05; see also Figure S3). Results, thresholded at a bootstrap-corrected

p < 0.05, are overlaid on a study-specific structural template and resampled to MNI space. Depicted is the extent of the hippocampal effect from y = �34 to

y = �24 with slice locations shown on a sagittal plane (right). These results were not influenced by differences in navigational behavior or mean hippocampal

BOLD signal across environments (see Figure S2).

(C) Searchlight results using a linear prediction model are overlaid on an averaged structural image (y = �85), thresholded at bootstrap-corrected p < 0.05. Bars

show the effect size in the peak visual cortex voxel ± SEM (x =�8, y =�79, z = 11; bootstrap-corrected p < 0.005), separately for the sigmoidal and linear model.

(D) Strength of neural similarity of hippocampal multi-voxel pattern for any environment compared to all other environments (radius of 5 mm around the peak from

the sigmoid model, see B; averaged across participants). Color code reflects strength of neural similarity; size of circle indicates SEM. Left plot refers to high

confidence trials; right plot shows data for low confidence trials.
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Figure 4. Participants with the Strongest Sigmoidal Effect in Behavior Also Show the Strongest Sigmoidal Response Pattern in the Hippo-

campus
(A) Both behavioral similarity to base environments (DA/(DA+DF)) and multi-voxel fMRI pattern similarity measures were separately tested against a predictor

matrix reflecting a canonical sigmoidal model using GLM, and the resulting t maps were correlated across participants (see Figure S4B). The same analysis was

also performed using a canonical linear predictor matrix. Group effects for the sigmoidal model, restricted to hippocampal region of interest and thresholded at a

bootstrap-corrected p < 0.05, are overlaid on a study-specific template. Shown is the extent of the hippocampal effect from y =�16 to y =�10with slice locations

shown on a sagittal plane. These results were not influenced by differences in navigational behavior or mean hippocampal BOLD signal across environments (see

Figure S2).

(B) Bar plots show the correlation coefficients for the canonical sigmoidal and linear model at their peak voxel in the hippocampus ± SEM (x = �39, y = �13,

z = �21; bootstrap-corrected p < 0.05).

(C) Multivoxel fMRI data surrounding the hippocampal peak voxel from (A) explained by the sigmoidal model relative to the linear model as trials progress (see

Supplemental Experimental Procedures). A shift toward a dominantly sigmoidal fit over time was observed, reflected in a significant positive slope of the fit ratio

during trial progression (linear regression: slope = 0.004, p < 0.05). The model predicts a fit ratio below 1 up to 5.4 s in the trial and above 1 after 9 s in the trial.

(D) Monte-Carlo simulation showing the adherence of the linear and sigmoidal model on randomly shuffled data; higher t values indicate a better fit. The dis-

tribution of t values from the linear model fits is wider and shifted to higher values compared to the t values from the sigmoidal model fits (Kolmogorov-Smirnov

test: p < 0.001).

(E) Scatterplot shows individual t-values from the fMRI against the behavioral GLM using the sigmoidal prediction model for every participant in the hippocampal

peak voxel.

(F) Similarity measures in each environment from both the fMRI and behavioral data are plotted against each other (see Supplemental Experimental Procedures).

A significant positive correlation was observed between the two similarity measures (Pearson’s correlation: t18 = 3.372, p < 0.001, R = 0.622). Environment-wise

distribution curves are plotted separately on the x and y axis for the fMRI and behavioral similarity measure, respectively. Kmeans cluster analysis revealed that a

two-cluster separation resulted in the highest Calinski-Harabasz index value (right plot; error bars indicate SEM). The two clusters in the left plot are indicated by

open and closed dots (group 1 and group 2) and are clearly separated along the diagonal. This suggests two basic patterns of data rather than a continuum,

indicative of a concurrent sigmoidal pattern in behavioral and neural responses.
The putative neural process underlying the formation of

hippocampal memories is remapping [19], the formation of

distinct representations by populations of place cells in response
1754 Current Biology 26, 1750–1757, July 11, 2016
to environmental change. Place-cell-based representations

exhibit attractor-like dynamics (sharp transitions) when animals

are exposed to similar novel environments that have features



mapping in between already known, distinct environments

(differing in shape, color, and texture; [22]), but not if trained in

environments that are less distinct [36]. Although it is infeasible

to register place cell activity in humans using fMRI, given that

the distribution of place cells in rodent hippocampus is non-

topographic with respect to the spatial distribution of their firing

fields [37], the aforementioned rodent place cell pattern shows

striking similarities with our data. Our data are consistent with

the absence of sigmoidal neural response patterns in the human

hippocampus when participants view highly similar visual

scenes [38, 39] and a linear scaling of hippocampal responses

with changes in the configuration of landmarks in four virtual en-

vironments [40]. The attractor-like behavior of place cells also

accords with observations in rodents that repeated exposure

to less-distinct environments is accompanied by a slower,

gradual development of distinct place cell representations [41].

However, the distribution of the place cell activity in different en-

vironments has not been examined in detail, and it is the similar-

ity of activity in different environments that we examine with

multi-voxel pattern analysis (MVPA) in our study. Our results

might also relate to a recent observation by Agarwal et al. [42],

showing that spatial information can be obtained from local field

potentials (LFPs) in the rodent hippocampus, summating electri-

cal activity of a large number of neurons, which more closely re-

lates to the BOLD response obtained with fMRI. However, future

translational studies are necessary to more directly understand

the relationship between population activity of spatially tuned

cells and the fMRI signal in the hippocampal formation.

How do nonlinear dynamics in the hippocampus relate to

pattern separation, as for instance indexed by fMRI adaptation

[43]? Pattern separation, albeit related, is not necessarily due

to attractor dynamics. Pattern separation in the hippocampus

might accentuate small differences, rather than being attracted

to a different fixed point, like the familiar pattern of the baseline

environments in the present study and in the work by Wills

et al. [22]. In addition, although pattern separation has been

observed during virtual reality navigation [44], putative attractor

dynamics are characterized by the emergence of a nonlinear

response profile over time (Figure 4C).

Could the presence of a sigmoidal effect in the fMRI pattern

in the hippocampus be explained by something other than pu-

tative attractor dynamics? A nonlinear response profile as

observed in the present study effectively reflects a thresholded

tuning function. Here, we provide evidence for a sigmoidal

pattern in both behavioral and multi-voxel fMRI data as well

as in a brain-behavior interaction and also show the systematic

emergence of the nonlinear response profile within trials. Taken

together, these effects are indicative of putative attractor dy-

namics but ultimately not a necessary condition, and alternative

processes could potentially explain the sigmoidal output func-

tion. Any such alternative must either include the differences in

background images or the locations where objects are placed

by participants, since these are the only features that change

between environments. Eliminating same-object comparisons

in our analysis does not influence our results; therefore, the

drop locations and associated similarities of paths and back-

ground cues cannot drive the observed sigmoidal pattern (Fig-

ure S3A). Furthermore, in visual cortex we do see a linear

response pattern rather than a sigmoidal pattern, making it
further unlikely that mere visual differences between environ-

ments contribute to the observed effect (Figure 3C). In addition,

naive participants perceive the background images to change

linearly (Figure 2), and this perception could be used to make

a binary choice on where to drop the cued object (i.e., if

perceived more similar to A, recall environment A). This strat-

egy would eliminate the need for putative attractor dynamics

in the hippocampus and still show binary memory activation

in fMRI data. However, it would not predict a change from a

more linear to a more sigmoidal pattern within trials as seen

in our data (see Figure 4C) or be congruent with earlier rodent

studies [22].

In sum, the sigmoidal response pattern we observe in the

hippocampus provides novel evidence for an abrupt, remap-

ping-like response to a linearly changed spatial context in hu-

mans, consistent with a recent report showing consequences

of such a response in multi-modal pattern completion [45]

and with pattern separation and completion during memory

disambiguation in virtual reality [44]. Participants were trained

to ceiling so as to form distinct and separate memories for

the two original environments. In addition, analyses of fMRI

data acquired during the learning phase for a subset of our

participants indicates that, like place cell remapping in less-

distinct environments [41], representations of environments

A and F in the hippocampus de-correlate as a function of

learning such that distinct representations already emerge

on day 1 and continue to diverge on day 2 (Figure S1; see

Supplemental Experimental Procedures). This suggests that

a certain level of distinctiveness between two representations

is required to observe nonlinear dynamics between the morph

environments.

In conclusion, our study provides evidence for putative attrac-

tor dynamics and spatial remapping in the human hippocampus

and highlights that these neural mechanisms underpin memory-

based decision making in novel situations.
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Supplemental Figures

Figure S1, related to Figure 1, learning phase. (A) Mean distance error (distance between response location and object 
location measured in virtual meters (vm) and averaged over objects and participants) decreased over time in both 
environment A and F (mean decrease in drop error on day 1 = 0.020 vm/trial, on day 2 = 0.008 vm/trial; average moment of 
asymptote in % session duration on day 1 = 67.1%, on day 2 = 56.8%). On the first day, participants performance improved 
more in the first half of the session than the second half, as defined by the slope of learning (paired t-test t19=2.18, P<0.05) 
but not on the second day (paired t-test t19=1.30, P=0.21). (B) Plots show the time course of the behavioral similarity to 
baseline environments (ΔA/(ΔA+ΔF), see Supplemental Experimental Procedures) reflecting the ‘A-ness’ (below 0.5) and 
‘F-ness’ (above 0.5) of the memory response. The increase in environment-specific memory response is most evident during 
the first day of training. An asymptote of the learning rate, reflecting maximum performance on a given day, was observed 
on both days in each environment for 10 participants. Six participants only showed an asymptote for both environments on 
day 2, suggesting they did not reach maximum performance on day 1. When averaging the locations of the asymptotes from 
day 2 over the two environments, participants reached asymptotic learning after 55.6% of the total session duration. Three 
participants showed only an asymptote on day 1, further inspection revealed that these participants had stable performance 
during the complete session on day 2. One participant had no asymptote and did not improve on either day. Paired t-test on 
the averaged performances of the last 50% of trials on the second training day revealed no difference in performance 
between environments A and F (t19=1.19, P=0.25). (C) fMRI data (n=11) from an exploratory analysis in the hippocampus 
obtained during the first training days was temporally split (2 x 30 minutes) and multi-voxel correlations between 
environments A and F during navigation were tested against the model that A differs from F. Bar plots show resulting 
parameter estimates (averaged across participants +/- SEM), for the first and second half. Parameter estimates differed 
between the two halves of the session (t10 =2.53, P<0.03), indicating that the correlation of multi-voxel patterns between A 
and F decreased during training.



Figure S2, related to Figure 3 and 4: Neither navigation behavior nor mean BOLD signal differs between 
environments. Bars show (A) mean time spent in each environment in seconds, (B) time spent walking relative to time 
spent rotating and (C) mean BOLD signal for the six environments (all bars averaged across participants +/- SEM). For 
each participant, the mean BOLD signal across all environments was subtracted from the environment-specific BOLD 
signal to account for the differences in baseline activity between participants. No differences between environments were 
observed (ANOVA A: F(5,95)=1.88, P=0.11; B: F(5,95)=1.17, P=0.33; C: F(5,95)=0.12, P=0.98).



Figure S3, related to Figure 3: Sigmoidal fMRI effect is not driven by path similarity and is neither present in 
extrahippocampal cortices within the medial temporal lobe. (A) To test whether the observed increased multi-voxel 
correlation between environments A, B, and C and between environments D, E, and F is partially driven by similarity in the 
paths walked or object properties, we excluded same-object comparisons from the RSA model. This means that in any 2 
trials where the object to be placed was the same, no prediction was made on the similarity of the fMRI data between these 
trials. We compared this model to the fMRI data at the peak voxel from our behavioral informed RSA analysis (see Figure 
3), bars show the resulting beta estimates +/- SEM. The analysis revealed a significant difference remained between the 
sigmoidal and linear models (paired t-test on the RSS from the 2 model fits: t19=2.81, P=0.006). (B) Both a perfect 
sigmoidal and linear model were tested on three extrahippocampal regions of interest within the medial temporal lobe, the 
bars show the resulting beta estimates +/- SEM. For all ROIs, for all models, beta estimates did not significantly differ from 
zero (all P>0.36).



Figure S4, related to Figures 3 and 4. Schematic of analysis logic testing the correlation between behavioral and 
fMRI sigmoidal response profiles. (A) Left: Example of predictor matrices used in behavioral informed analysis. Middle: 
linear predictor matrix which did not change between analyses. Right: Sigmoidal model predicting perfect similarity 
between A, B and C, and separately between D, E and F, while also predicting perfect separability between A, B, C and D, 
E, F. (B) Behavioral similarity to baseline environments (example in top left panel) and multi-voxel patterns in searchlights 
(bottom left) were used to generate separate trial-by-trial correlation matrices. These two data matrices were separately 
tested against a predictor matrix reflecting a perfect sigmoidal model using GLM. The two resulting arrays of t-values were 
correlated across participants (right: example data for illustrative purpose). The same analysis was also performed using a 
perfect linear predictor matrix (see Figure 4).



Supplemental Experimental Procedures

Participants. 25 participants took part in this study of which 3 participants were excluded from further data analyses due to 
excessive head motion during scanning (high occurrence of >5mm movement and >3 degrees rotation spikes during a 
session). In addition, 2 participants were excluded due to scanner malfunctioning. Of the remaining 20 participants, 6 were 
male and 14 female, with an average age of 21.3 years (ranging between 19 and 28). Participants gave written consent and 
were paid for participating, as approved by the local Research Ethics Committee (CMO region Arnhem-Nijmegen, The 
Netherlands). All participants had normal or corrected-to-normal vision and reported to be in good health.

Virtual reality environments. We developed a virtual reality (VR) task using the UnrealEngine2 Runtime software 
(http:/udn.epicgames.com/Two/Webhome.html). Within this software we created a virtual arena that comprised a circular 
grassy plane surrounded by a wall with mountains in the background. By systematically changing the shape of the 
mountains we created six different environments (A through F). Since hippocampal fMRI responses are sensitive to changes 
in environmental geometry [S1-2], we shaped the mountains such that they linearly morphed from A through F (B = 20%A 
+ 80%F; C = 40%A + 60%F; D = 60%A + 40%F; E = 80%A + 20%F.; see Figure 1B). The backgrounds of the two extreme 
environments (A and F) were chosen such that they are clearly discriminable but differ in as few features as possible to 
allow for smooth morphing between them. This resulted in both these backgrounds containing two prominent mountains of 
different heights and the same feature-restrained sky. Background images were created by generating height maps using 
Matlab 7.9 (http://www.mathworks.com) which were transformed into images of landscapes using the Terragen software 
package (http://www.planetside.co.uk). In the VR environment participants embodied an avatar with first person perspective 
and moved by using a button-box with their right hand enabling forward movement and left and right turns. The avatar’s 
location and heading were recorded every 100 milliseconds.

Virtual reality task. Our task consisted of a two day learning phase (separated by 23 hours) immediately followed by a 
testing phase. In the learning phase participants learned the location of four objects in two separate environments, each 
object having a unique locations in each environment (Figure 1A). In the testing phase participants replaced the objects in 
both the learned environments (A and F) and the four novel morph environments (B, C, D and E). 

The learning phase started with a short initial familiarization phase in which the four objects were shown once in 
environment A and once in F. In each subsequent trial an object was cued by appearing in the top part of the screen for 2 
seconds after which participants navigated to the location they thought the object should be (time-out after 20 seconds, 
mean trial duration = 14.63 seconds). Feedback was provided by showing the object at its correct position after which 
participants had to collect the object (mean duration = 6.42 seconds; see Figure 1C). Every 9 minutes environments were 
switched by spawning a navigable bridge connecting the two environments that the participants had to cross. Participants 
visited each environment 3 times on each training day (first day: mean number of trials = 159.0, SEM = 6.8. second day: 
mean number of trials = 149.7, SEM = 8.6). In the testing phase participants performed between 1 and 4 trials before an ITI 
of 2-4 seconds appeared. Unknown to the participants, environments were changed during an ITI to one of the six 
environments in the morph sequence. Trial structure for the testing phase was unchanged other than that no feedback on the 
true object location was provided (mean number of trials = 235.5, SEM = 7.7, mean trial duration = 12.38 seconds). The 
order of environments and objects was counterbalanced so that no object would be cued twice in a row and the unique 
object-environment combinations are distributed uniformly over a session. In addition, for 15 participants we recorded a 
confidence rating (on a 5 point scale) on the precision of placement of the object after each trial.

Analysis of behavioral data. Spatial memory performance during all sessions was measured as the Euclidean distance 
between the response location and the correct object location in each trial. In order to test if participants’ spatial memories 
were stable after the learning session, we fitted this ‘drop error’ over time of both training sessions to a quadratic 
polynomial model. The differential of the resulting function determined the slope at any given point on the learning curve. 
An average negative slope indicated learning of the location of the objects while the existence of a horizontal asymptote 
indicated maximum acquisition on a given day (Figure S1).

During the testing phase, our main behavioral measure was the relative difference between the object replacement location 
and the true object location in environments A (ΔA) and F (ΔF), calculated as ΔA/(ΔA+ΔF). This behavioral similarity 
measure scales linearly from 0 to 1 with increasing ΔA and decreasing ΔF (Figure 1D), reflecting the ‘A-ness’ and ‘F-ness’ 
of each memory response. This measurement was fitted to a sigmoid and a linear model using Maximum Likelihood 



Estimation (MLE), for which the probability density functions were defined as six normal distributions with the mean of 
each distribution corresponding to values predicted by variable parameters for a linear or a sigmoid model. The standard 
deviation of all normal distributions was fixed to 0.25 so that at least 95% of the possible values would fall within the 
probability distribution. The resulting probability values were normalized so the area under the curve of the probability 
distributions summed to 1. Both the linear and the sigmoidal model have 2 free parameters, thus model complexity was held 
constant. The sigmoidal model was defined as

y i=
1+a

1+e− xi +b
+(1+a) /2

where a is the amplitude and b the horizontal offset. The linear model was defined as

y i=a ∗ xi+b

where a is the slope and b the vertical offset. Per participant, we fitted each model to the behavioral data and compared the 
resulting residual sum of square (RSS) between the models using a paired t-test.

Behavioral control experiment - Perception of background cues. We performed a separate behavioral experiment to test 
if there was non-linearity in the perception of the environments’ background images (from A to F). 16 naive participants (12 
females and 4 males, average age: 22.0 years; range: 16 to 29 years) were presented with 392 trials each consisting of image 
pairs representing the background of two environments. The images were displayed consecutively (stimulus duration lasted 
2 seconds for each image) with a 1 second mask image in between (scrambled version of the first image of each pair). At the 
end of each trial, participants scored the perceived difference between the presented images on a 5-point similarity scale, 
followed by an ITI of 1 second, see Figure 2A. Trials were divided into 8 blocks separated with 20 seconds breaks. We 
applied to the similarity scores the same analysis logic as to the behavioral memory responses from the main experiment, 
i.e. the scored difference of each environment compared to either environment A (ΔA) or environment F (ΔF) represented as 
ΔA/(ΔA+ΔF). This measure was fitted to a sigmoid and linear model using MLE (see above). These models were then 
compared using a paired t-test on the resulting RSS. 

MRI data acquisition. Imaging data was acquired on a Siemens 3T Trio scanner using a 32- channel head coil. The 
functional sequence used was a custom multi-echo 3D EPI sequence (TR = 1800 ms; TE = 25 ms; flip angle = 15°; 64 slices 
of matrix 112 × 112 with a 25% gap; voxel size = 2 × 2 × 2 mm). Scanning of functional images was subdivided into two 
blocks of 30 minutes each (1000 volumes each) with a break of approximately five minutes. In addition to the testing 
session, 11 out of the 20 participants were scanned during the first training session. For every scanning session, a field map 
using a gradient echo sequence was recorded for distortion correction of the acquired EPI images. The structural scan 
comprised a MPRAGE-grappa sequence (TR =  2300 ms; TE = 3.03 ms; flip angle = 8°; in-plane resolution = 256x256 mm; 
number of slices = 192; acceleration factor PE = 2; voxel resolution = 1 mm3, duration = 321 seconds).

Image preprocessing. For the fMRI analysis, we used the Automatic Analysis framework [S3], which combines tools from 
SMP8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)  and the FMRIB 
Software Library v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/),  complemented by custom scripts executed in Matlab 7.9. 
Preprocessing consisted of de-noising of the structural image using a non-local means filter [S4], motion correction, co-
registration of functional images to the structural scan and brain-extraction. White matter was masked out using FreeSurfer. 
Finally, a study specific structural template was build and non-linear normalization of participant-specific contrasts to this 
template was performed using the Advanced Normalization Tools version 1.9 for Unix (http://www.picsl.upenn.edu/ANTS).

Representational similarity analysis. fMRI data were modeled with square wave regressors, one regressor for each trial. 
The start of each trial was defined by the onset of a cue indicating which object should be relocated by the participant and 
the response by the participant defined the end of each trial. The average trial duration was 14.63 seconds (i.e. 8.1 TRs). The 
regressors were convolved with a hemodynamic response function (HRF) and voxel-wise unsmoothed beta values were 
extracted per regressor of interest. Additional nuisance regressors consisted of three translations and three rotations derived 



from motion correction, as well as single spike regressors reflecting large, sudden, head movements. The voxel-wise betas 
were used in subsequent searchlight analyses using representational similarity analysis (RSA) [S5]. RSA comprised the 
voxel-wise extraction of beta values from each trial, which were correlated across trials resulting in a trial by trial 
correlation matrix. For every combination of trials a prediction on their similarity was made based on the environments 
navigated in those trials (Figure 3A). How well the similarity matrices fit the prediction models was assessed using general 
linear modeling (GLM). The resulting searchlight voxel-wise beta brain maps were normalized, smoothed and subjected to 
second-level random effects analysis.

Group-level fMRI analysis. In a first analysis on fMRI data from the testing phase (see Figure 3), the sigmoid fitted to 
each participant’s behavioral similarity measures ΔA/(ΔA+ΔF) was used to predict the similarity in the multi-voxel fMRI 
pattern on a trial-by-trial basis. The resulting predictor matrix (see Figure S4B) was subsequently tested against the actual 
similarity between different trials from the fMRI data. A linear model was used as control since this adhered to the visual 
changes in the environment morph sequence (Figure 2C; see Behavioral control experiment above).

Given our strong a prior hypothesis, analyses were initially restricted to the hippocampus, details on the region-of-interest 
are outlined below. Using a bootstrap method we applied a corrected statistical threshold of P<0.05 to all GLM results. A 
bootstrap method was also used to directly compare the fit between these models while keeping multiple comparison 
correction (see Bootstrap analysis below).  To assess the relationship between putative attractor dynamics in both behavior 
and neural pattern (see Figure 4), we compared how well a perfect sigmoidal model (step-function) fit the behavioral and 
fMRI data, using again a linear model as control (Figure S4A). Fitting of models to both the behavioral data (ΔA/(ΔA+ΔF) 
and fMRI data (multi-voxel trial- by-trial fMRI pattern) was performed using GLM. Subsequently, resulting t-maps were 
correlated over participants, separately for sigmoidal and linear models (Figure 4B). Again, a bootstrap method was used to 
assess the significance of the correlations while keeping multiple comparison correction (see Bootstrap analysis below).

Bootstrap analysis. To assess whether fMRI data in any voxel significantly fit a sigmoidal or linear model we shuffled all 
the first level contrast images and applied a 5 mm half width half maximum variance smoothing to the contrasts. We did this 
5000 times and for each permutation the resulting data was tested against the sigmoidal and linear prediction model 
generated as if the data was non-shuffled. The resulting distribution of t-values were used for testing the significance of fit 
of either model to non-shuffled data. A similar bootstrap method was used to directly compare the fit between these models 
while keeping multiple comparison correction. Per participant we subtracted the GLM t-value of the sigmoidal model from 
the t-values of the linear model and using a one-sample t-test on this difference a p-value was calculated. This step was 
repeated for 5000 permutations, each time shuffling the voxels, and the resulting distribution of p-values provided the 
critical value to test the p-value of a one-sample t-test on non-shuffled data. A bootstrap method was also used to assess 
where in the hippocampus significant correlation between fMRI data and behavioral data existed. This method comprised 
shuffling the t-values obtained by applying a GLM on fMRI data using either a perfect sigmoidal or linear model over 
participants for every voxel. The resulting t-values were correlated with the t-values resulting from fitting the same models 
to non-shuffled behavioral data. This process was repeated 5000 times and rendered a distribution of correlation coefficients 
per voxel used to test the significance of the correlation coefficient between the non-shuffled fMRI and behavioral data.

 
Regions Of Interest. A hippocampal ROI was manually segmented using MeVisLab software (MeVis Medical Solutions 
AG, Bremen, Germany) on a study specific structural template generated by the ANTS software (see above). The 
segmentation was based on a protocol described by [S6] and [S7], and guided by an anatomical atlas of the human 
hippocampus [S8]. Post-hoc ROI analyses using the perfect sigmoidal and linear model were performed on the perirhinal, 
entorhinal and parahippocampal cortex. For the perirhinal cortex ROI, a probabilistic map was used [S9]. The entorhinal 
cortex ROI [S10] was obtained from the SPM anatomy toolbox version 2.2 and the parahippocampal cortex ROI was 
obtained from the Talairach label database [S11-12] and transformed into MNI space using BioImage Suite version 3.01 
(http://bioimagesuite.yale.edu). All probabilistic maps were visually inspected to ensure that no hippocampal voxels were 
included and a relative conservative threshold was applied (voxels included were in >90% of brains used to make the 
probabilistic maps labeled as the ROI).

Searchlight analysis. Searchlight mapping was performed on the native space images of each participant by moving a 
spherical searchlight (4 voxel radius) through the gray-matter masked volume or ROI one voxel at a time. Statistics were 
mapped back to the central voxel of each spherical searchlight thus yielding a single-participant information map. Analysis 



was restricted to searchlights that contained at least 30 voxels, thereby eliminating searchlights that were close to the edge 
of gray matter. The first-level results were normalized and smoothed with a 4mm FWHM kernel, and a second-level model 
on the resulting data was carried out to examine information at the group level. All results are reported in MNI coordinates.

Divergence of the neural pattern between environments during training. In a post-hoc analysis on the training phase 
data, we tested if the neural pattern in the hippocampus changed as a function of learning object positions while navigating 
environments A and F. We split the data into two halves (first and last 30 minutes of the session) and calculated per trial the 
voxel-wise correlations with every other trial within each half. The resulting correlations were related to the appropriate cell 
of an environment-by-environment correlation matrix and this matrix was tested against a matrix predicting a larger neural 
similarity for activation patterns within an environment than between environments (Figure S1). We predicted that the 
model would fit the second half of the learning phase better than the first half as the representation of the environments was 
thought to diverge over time, consistent with attractor dynamics.

Monte-Carlo simulation. In order to test if a sigmoidal model fits the fMRI data better regardless of the specific 
environment navigated or the trial number, we performed a Monte-Carlo simulation. From the whole data set each voxel 
from each EPI image was assigned a unique number. From this pool 105750 voxels were randomly picked with replacement 
and assigned a trial number between 1 and 235 and an environment number between 1 and 6 such that each combination of 
trial and environment had the same amount of voxels. Using this data, we fitted both a sigmoidal and a linear model as 
described above and saved the resulting t-values. The process of picking voxels, assigning trials and scenes and fitting both 
models was repeated 10,000 times resulting in a distribution of t-values for each model, which were compared using the 
non-parametric Kolmogorov-Smirnov test.

fMRI and behavioral data similarity. To examine the relation between behavioral and fMRI data we calculated a 
similarity measure for the fMRI data akin to the similarity measure used to analyze the behavioral data. Using GLM, for 
each environment we modeled both similarity to environment A (ΔA) and similarity to environment F (ΔF). Using the peak 
voxel from our correlation analysis (see Figure 4A) as our coordinate, we applied the formula ΔA/(ΔA+ΔF) which resulted 
in a similarity measure that scales linearly from 0 to 1 with increasing ΔA and decreasing ΔF. Having both a similarity 
measure from behavioral and fMRI data that can be readily compared, we plotted these measures against each other and 
applied K-means clustering on the resulting 2D space, assessing the optimal number of clusters using the Calinski-Harabasz 
index value [S13], and examined the correlation between the measures using Pearson's correlation coefficient. K-means 
clustering was performed 1000 times, each time with new random starting centroids to avoid convergence to a local minima 
and the result with the lowest total within-cluster point-to-centroid distances is shown in Figure 4C. 

Within-trial dynamics of sigmoidacity versus linearity. In a post-hoc analysis we looked at within-trial dynamical 
changes of the explanatory power of both a perfect sigmoidal and linear model over time, again around the peak voxel 
obtained from our correlation analysis (see Figure 4A). To this end, we split each trial in overlapping 3.6 second segments 
with the center of the segments 1.8 seconds apart from neighboring segments. Using GLM, all segments that were in the 
same time-window within all trials were fitted to a perfect sigmoidal model and the resulting betas were divided by betas 
obtained from fitting the same data to a linear model. This resulted in a measure directly comparing the contribution of the 
sigmoidal model to the linear model as trials progressed. This was done for each participant, resulting in no more than 20 
data-points per time-window. Using a linear regression we assessed whether this measure changed structurally within trials 
as they progressed.
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