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SUMMARY

Reactivation of hippocampal place cell sequences
during behavioral immobility and rest has been
linked with both memory consolidation and naviga-
tional planning. Yet it remains to be investigated
whether these functions are temporally segregated,
occurring during different behavioral states. During
a self-paced spatial task, awake hippocampal replay
occurring either immediately before movement to-
ward a reward location or just after arrival at a reward
location preferentially involved cells consistent with
the current trajectory. In contrast, during periods of
extended immobility, no such biases were evident.
Notably, the occurrence of task-focused reactiva-
tions predicted the accuracy of subsequent spatial
decisions. Additionally, during immobility, but not
periods preceding or succeeding movement, grid
cells in deep layers of the entorhinal cortex replayed
coherently with the hippocampus. Thus, hippocam-
pal reactivations dynamically and abruptly switch
between operational modes in response to task de-
mands, plausibly moving from a state favoring navi-
gational planning to one geared toward memory
consolidation.

INTRODUCTION

Prominent theories of hippocampal function place it at the cen-

ter of networks supporting memory and navigation (O’Keefe

and Nadel, 1978; Scoville and Milner, 1957). The principal cell

of the hippocampus is the place cell, whose activity during

locomotion encodes the animal’s self-location via spatially

localized firing fields (place fields) (O’Keefe and Dostrovsky,

1971). However, during non-rapid eye movement (non-REM)

sleep and pauses in locomotion, when sharp-wave ripple com-

plexes (SWRs) transiently dominate the hippocampal local field

potential (LFP) (Buzsáki et al., 1992; O’Keefe and Nadel, 1978),

place cell activity de-couples from the animal’s current loca-

tion, reactivating past or future spatial trajectories (replay)

(Foster and Wilson, 2006; Lee and Wilson, 2002; Wilson and

McNaughton, 1994).
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At the time of discovery, replay was proposed as the mecha-

nism supporting systems-level memory consolidation (Wilson

and McNaughton, 1994), the process by which memories are

transferred out of the hippocampus, becoming less susceptible

to hippocampal damage (Marr, 1971; Scoville and Milner, 1957).

Consistent with this hypothesis, replay typically reflects recent

experiences, particularly novel ones (Cheng and Frank, 2008;

Foster and Wilson, 2006; O’Neill et al., 2008; van de Ven et al.,

2016), is dependent on the NMDA receptor (Dupret et al.,

2010; Silva et al., 2015), and is associated with cortical reactiva-

tions (Ji and Wilson, 2007; Rothschild et al., 2017; Wierzynski

et al., 2009). Indeed, cortical replay has been found to temporally

lag the hippocampus (Ólafsdóttir et al., 2016; Rothschild et al.,

2017), suggestive of information flow from the hippocampus to

the cortex (Ólafsdóttir et al., 2016; Rothschild et al., 2017).

Furthermore, numerous studies have shown that cortical LFP

patterns associated with sleep, such as delta waves (Maingret

et al., 2016; Mednick et al., 2013) and spindles (Johnson et al.,

2010), are temporally coordinated with SWRs (Battaglia et al.,

2004; Peyrache et al., 2011; Sirota et al., 2003), and they have

indicated that cortico-hippocampal dialogue may be important

for learning (Maingret et al., 2016). More generally, SWRs origi-

nate in the hippocampus (Buzsáki, 2015; Suzuki and Smith,

1985), propagate into the cortex (Chrobak and Buzsáki, 1994,

1996), and occur at a greater rate after learning (Eschenko

et al., 2008). Elimination of SWRs during rest impairs spatial

learning (Ego-Stengel and Wilson, 2010; Girardeau et al.,

2009). Conversely, hippocampal reactivation during rest en-

hances learning (de Lavilléon et al., 2015; Rasch et al., 2007).

Nevertheless, it is now apparent that replay, and the roles

attributed to it, are more diverse than first thought. While the

role of replay during non-REM sleep (offline) in consolidation is

well supported, the purpose of awake replay (online) is less clear.

On one hand, online replay is modulated by environmental nov-

elty (Cheng and Frank, 2008; Foster and Wilson, 2006) as well as

changes in reward (Ambrose et al., 2016; Singer and Frank,

2009), and interference with online SWRs impairs the acquisition

of spatial tasks (Jadhav et al., 2012), suggestive of a role in

learning, if not also consolidation. However, online replay has

also been linked with spatial planning and navigation (Foster

and Knierim, 2012; Pfeiffer and Foster, 2013; Samsonovich

and Ascoli, 2005), consistent with theoretical propositions sug-

gesting replay as a mechanism for exploring potential routes or

extracting goal-directed heading vectors (Bush et al., 2015;

Erdem and Hasselmo, 2012, 2014; Gupta et al., 2010) and
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experimental results demonstrating preferential replay of goal-

oriented trajectories (Pfeiffer and Foster, 2013).

The range of functions attributed to online replay may relate to

apparent distinctions in the forms it can take. For example, the

sequence in which place fields are reactivated during replay

can recapitulate their order on the track (forward replay) (Diba

and Buzsáki, 2007; Lee and Wilson, 2002; Skaggs and

McNaughton, 1996) or invert it (reverse replay) (Foster and Wil-

son, 2006), a dichotomy that also exists for offline replay

(Ólafsdóttir et al., 2016; Wikenheiser and Redish, 2013). While

forward replay was originally linked with movement initiation

and reverse replay with goal arrival (Diba and Buzsáki, 2007),

that distinction is now less secure (e.g., Gupta et al., 2010),

and it appears reverse replaymay be important for reinforcement

learning (Ambrose et al., 2016; Foster and Knierim, 2012).

Furthermore, although online replay typically encompasses lo-

cations close to the animal’s current location (Davidson et al.,

2009; Dupret et al., 2010; O’Neill et al., 2006; Pfeiffer and Foster,

2013), it can also be remote, representing distant portions of the

current environment not related to current goals (Davidson et al.,

2009; Gupta et al., 2010), a portion of an environment being

avoided (Wu et al., 2017), or even entirely distinct enclosures

(Jackson et al., 2006; Karlsson and Frank, 2009).

Thus, although navigation is sometimes associated with for-

ward replay of proximal locations, perhaps supporting goal-

directed navigation, equally often online replay is not navigation-

ally relevant, depicting remote locations away from important

goals. The factors that govern the switch between these two

forms of replay remain unclear. What determines the content

of reactivations? Could task demands dictate whether replay is

conducted for the purpose of planning or consolidation? If so,

does the occurrence of navigationally relevant replay contribute

to accurate spatial decisions?

Here we analyze place cell replay occurring during periods of

immobility interspersing a self-paced spatial decision task. We

find that, after pausing, rats transition rapidly from a state in

which they preferentially exhibit replay associated with the

ongoing task to a disengaged state, in which replay was directed

toward remote sections of the track and also incorporated grid

cells from deep layers of the medial entorhinal cortex. Subse-

quently, reinstatement of movement was prefixed by a switch

back to an engaged state, characterized by forward replay of

proximate sections of the track without coherent grid activity.

Finally, we observed that reactivations occurring before animals

made errors on the task did not exhibit engaged-like replay and

errors could be predicted on the basis of the replay content.

These results suggest that online replay supports both consoli-

dation and spatial planning, providing the first evidence that

switching between these states occurs dynamically according

to task demands, and, when animals are engaged in a task,

that replay content can be important for accurate spatial

behavior.

RESULTS

We recorded CA1 place cells (21–72 cells/session; Figure 1C;

Figure S1; Table S1) over 1–5 days in eight rats while they per-

formed a spatial decision task (see STAR Methods and Fig-
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ure 1A). Animals were required to complete laps on an elevated

6-m Z-track. Specifically, rats began each session at the end of

arm 1 and ran to the first corner (between arm 1 and arm 2),

where they stopped in order to receive a food reward. Following

this, they ran to the second corner (between arm 2 and arm 3)

and then on to the end of arm 3, being rewarded at the corners

and arm ends. They then ran back to the start of arm 1 in a similar

fashion (mean number of laps = 22 [SD = 4.82], mean pause

duration = 10.71 s [SD = 16.49 s; Figure S2]). Note, only correct

turns at the corners would result in food reward at the next stop.

Runs going from arm 1 to arm 3 were labeled outbound and runs

going back from arm 3 to arm 1 inbound. With experience, ani-

mals became increasingly fluent at the task, making fewer wrong

turns at the corners (error versus day, r =�0.61, p = 0.0016; Fig-

ure 1B) and taking less time to complete laps (lap duration versus

day, r = �0.46, p = 0.0066).

Corner stops were divided into two temporal sections:

engaged, including periods when the animal had just arrived at

the corner (<5 s) and just before movement onto the next track

was reinstated (<5 s; Figure 1D, ii), and disengaged, the time in

between these two periods (Figure 1D, i). We analyzed reactiva-

tion events occurring while animals were at the corners. Reacti-

vations were identified based on increases inmulti-unit place cell

activity (see STAR Methods for details), and they were limited to

periods when the animals’ speed remained below 3 cm/s. Place

cell activity during reactivations was analyzed using a Bayesian

decoding approach (Davidson et al., 2009; Ólafsdóttir et al.,

2016; Zhang et al., 1998) to calculate the probability of an ani-

mal’s location on the track given the observed activity (Figure 1D;

Figure S3). In the first instance, to understand which sections of

the track were represented, we simply summed the probability

distribution over each arm, identifying the one that was most

strongly reactivated (Figure 1D, i and ii). Note, because place

cell activity is highly directional on linear tracks (McNaughton

et al., 1983), inbound and outbound runs on each arm were

treated separately (mean Pearson correlation between inbound

and outbound ratemaps = �0.0032 [SD = 0.28]; Figure S4).

Thus, it was possible to identify reactivation of each of the three

arms, in either the inbound or outbound direction.

We identified a total of 1,415 engaged and 3,010 disengaged

reactivation events. No differences were found between

engaged events occurring at the start and end of corner stops

(Figure S5). As such, these periods were combined for all subse-

quent analyses. Engaged events showed a robust bias to reac-

tivate spatial firing congruent with an animal’s current direction

of travel (62.26% versus chance, p < 0.0001, chance derived

from shuffling cell IDs; Figures 2A, i and ii, and 2B). Hence, during

inbound runs, inbound representations weremore likely to be re-

activated and vice versa. Disengaged events showed no such

bias, being equally likely to activate congruent or incongruent

representations (52.19% versus chance, p = 0.39, engaged

versus disengaged, p < 0.0001; Figure 2B). Moreover, engaged

events also showed a strong preference to reactivate either of

the tracks adjacent to the animal’s current position, the local

arms, as opposed to the remote arm (80.70% local reactivation

versus chance, p < 0.0001; Figures 2A, iii and iv, and 2C). Again,

this bias was not present in disengaged events, where the pro-

portion of events where the local arms were reactivated relative
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Figure 1. Hippocampal Reactivations during Task Engagement and Disengagement

(A) Rats completed laps on the Z-track.

(B) Number of errors per session versus experimental day with Pearson’s r.

(C) Representative linearized outbound place cell ratemaps for 10 CA1 place cells. x axis, track position (cm); y axis, firing rate scaled to each cell’s peak rate

(shown above the ratemap).

(D) Representative disengaged and engaged reactivation events. (i) Left: an example path (pink) is superimposed on the posterior probability matrix over position

(based on periods when animals were running >10 cm/s), with darker shades indicating higher probability. Position of cartoon rat indicates the animal’s location

and heading direction during the event. Disengaged periods are highlighted in red. x axis, track position (cm); y axis, time (s); bin size, 500 ms. Right: position

decoding of a reactivation event is shown (based on periods when animals were stationary, <3 cm/s). x axis, track position (cm); y axis, probability of position.

(ii) Same is shown as in (i) but for an engaged reactivation event. See also Figures S1–S4.
to the remote arm was not different to chance (71.42% versus

chance, p = 0.31; engaged versus disengaged, p < 0.0001).

Importantly, the results could not be explained by differences

in ripple power (Figure S6) or movement speed (Figure S7) during

the two types of events. Although disengaged events were

characterized by lower theta-band power than engaged events

(log[theta power/delta power] during engaged = 0.31 [SD =

0.41], disengaged = 0.23 [SD = 0.39], p < 0.0001; Figure S6;

log[theta power/delta power] during running = 0.64 [SD =

0.42]), results were unchanged by the exclusion of events with

high theta power (i.e., analysis limited to events with theta

power <1 SD below mean power during running; Figure S7;

see also Figure S8 for a detailed analysis of LFP profile during

different task epochs). No difference in ripple power was found

between the different event categories (Figure S9). Thus, reacti-

vation events occurring while animals were engaged in the task

were more likely to incorporate place cells immediately relevant

to that task, representing adjacent sections of the track, and be

congruent with the animal’s direction of travel.

To better understand the time course governing the transition

between the engaged and disengaged states, we examined how

the proportion of local and congruent reactivations varied as a
function of the time since arrival at, as well as departure

from, the corners. Specifically, while animals were stationary

(<3 cm/s) at the corners, we calculated the proportion of

congruent/local events in 5 s windows (advancing in 2.5 s incre-

ments), and we assessed at what time point the proportions

were no longer significantly above chance. Following corner

arrival, the proportion of congruent events remained above

chance for the first 12.5 s (Figure 2D, i). A bias for congruent re-

activations was also present for the last 12.5 s preceding corner

departure (Figure 2D, ii). The analysis of local reactivations re-

vealed a similar pattern, namely, the proportion of events classi-

fied as local remained above chance for the first 10 s after corner

arrival (Figure 2E, i) and for the last 10 s prior to exit (Figure 2E, ii).

Similarly, ripple power was higher immediately after arrival and

just before departure from a corner (Figure S10). Thus, for the

first and last 10–15 s of stopping periods, hippocampal reactiva-

tions remained in an engaged state, after which they sharply

transitioned to a disengaged state. Subsequently, we examined

the trajectories encoded during reactivation events.

A Bayesian approach was applied to calculate, for each 10-ms

bin within an event, the probability distribution over track posi-

tion (Zhang et al., 1998). We then applied a line-fitting procedure
Neuron 96, 925–935, November 15, 2017 927
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Figure 2. Track Reactivations Are Modulated by Task Engagement

(A) Representative position decoding for a congruent (i), incongruent (ii), local (iii), and remote (iv) reactivation event. Upper panels: decoding was performed

separately with ratemaps corresponding to outbound (top) and inbound (bottom) runs. Reactivation events decoding to a run consistent with the animal’s current

trajectory were categorized as congruent (left) as opposed to incongruent (right). Lower panels: events reactivating positions on the arms immediately ahead or

behind the animal were categorized as local (iii), while events reactivating positions on the remote arm were categorized as remote (iv). Position of animal during

event is indicated by the location of the cartoon rat. x axis, track position (cm); y axis, probability of position.

(B) Proportion of engaged (green) and disengaged (amber) reactivation events categorized as congruent. Error bars indicate 95% confidence interval based on

bootstrapped data.

(C) Same as (B) but for local reactivations.

(D) Proportion of congruent reactivations as a function of time after corner arrival (i) and before corner departure (ii). Shaded areas show 1 SD of bootstrapped

data. x axis, time (s); bin size, 2 s; y axis, proportion of congruent reactivations.

(E) Same as (D) but for local reactivations (*p < 0.05 versus chance). See also Figures S5–S10.
(Davidson et al., 2009; Ólafsdóttir et al., 2016) to the resulting

posterior probability matrix to identify possible replay trajec-

tories (Figure 3A, i and ii). Again, events were classified as either

outbound or inbound depending on which produced the higher

best-fit line. Putative events whose rank against their own spatial

shuffle distribution exceeded the 97.5th percentile, and which

occurred while the animal was stationary (<3 cm/s), were classi-

fied as replay events (Figure S11; Table S1).

We identified a total of 149 engaged replay events and 364

disengaged replay events. As before, we saw that engaged

replay events preferentially reactivated spatial representations

congruent with an animal’s current direction of travel (60.82%

versus chance, chance derived from shuffling of engaged and

disengaged events, p = 0.024; engaged versus disengaged,

p = 0.013; Figure 3B). Disengaged events exhibited no bias, be-

ing equally likely to represent trajectories moving in either di-

rection (50.50% versus chance, p = 0.89). Furthermore, a clear

majority of engaged events replayed trajectories close to the

animal (mean position of replay trajectory <60 cm from animal,

70.21% versus chance, p < 0.001, mean distance from animal

at start of event = 69.32 cm [SD = 80.78 cm]), whereas disen-

gaged events showed a preference for replaying trajectories

remote to the animal (42.03% versus chance, p = 0.0006;

engaged versus disengaged, p < 0.0001, mean distance from

animal at start of event = 134.48 cm [SD = 119.17 cm],

p < 0.0001; Figures 3C, 3F, and 3G). Moreover, we classified

replay events as forward or reverse based on the slope of the
928 Neuron 96, 925–935, November 15, 2017
best-fit line, finding that the majority of engaged replay events

were forward events (75.8% versus chance, p < 0.0001), while

disengaged periods did not show a preference for forward or

reverse replay (53.3% versus chance, p = 0.093, engaged

versus disengaged, p < 0.0001; Figure 3D). Importantly, these

differences could not be explained by the robustness of

the replayed trajectories; although we identified a higher num-

ber of disengaged replay events than engaged events, the

percentage of putative events qualifying as replay events for

the two categories was not different (36.88% versus 38.60%,

p = 0.28; Figure 3E).

Finally, we did not find a difference in the proportion of events

depicting paths ahead of the animal during engaged and disen-

gaged periods (i.e., prospective replay, engaged 63.09% versus

disengaged 68.22%, p = 0.87; Figure 3H). It should be noted that

it is unlikely that the observed difference between engaged and

disengaged periods result from theta sequences (Foster andWil-

son, 2006; Gupta et al., 2012; Johnson and Redish, 2007) or

phase precession (O’Keefe and Recce, 1993); theta power dur-

ing engaged and disengaged replay events did not differ

(log[theta/delta] power during engaged = 0.11, disengaged =

0.13, p = 0.65; Figure S12; log[theta power/delta power]

during running = 0.64 [SD = 0.42]), and results were unchanged

when replay trajectories were required to exceed 2 m in length

or when they were limited to events that co-occurred with

SWRs (Figure S13). In sum, during periods of task engage-

ment, replay preferentially depicted task-relevant place cell
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Figure 3. The Content of Replay Trajectories Is Modulated by Task Engagement

(A) Representative engaged (i) and disengaged (ii) replay events. (i) Left: path (pink) is superimposed on position decoding, with darker shades indicating higher

probability of position. Cartoon rat indicates animal’s position during event. x axis, track position (cm); y axis, time (s); bin size, 500 ms. Right: position decoding

during a replay event is shown, with best-fit trajectory superimposed in pink. x axis, track position (cm); y axis, time (ms); bin size, 10 ms. Inset: replay event best-

fit trajectory versus shuffle distribution is shown; red bar indicates best-fit trajectory score of original event. (ii) Same is shown as in (i) but for a disengaged event.

Disengaged period is highlighted in red.

(B) Proportion of engaged (green) and disengaged (amber) replay events categorized as congruent. Error bars show 95% confidence interval based on boot-

strapped data.

(C and D) Same as (B) but for local (C) and forward (D) replay.

(E) Proportion of putative engaged (green) and disengaged (amber) events categorized as replay events.

(F) Distance between animal’s actual position and start (i) or end (ii) of the replay trajectory.

(G) Probability distribution of distances between animal and start (i) or end (ii) of the replay trajectory.

(H) Proportion of engaged (green) and disengaged (amber) replay events categorized as prospective (i.e., depicting trajectories ahead of the animal). See also

Figures S11–S13.
sequences: trajectories congruent with an animal’s current di-

rection of travel, that were close to its current position, and

that maintained the order in which cells were activated during

experience. Conversely, during disengaged periods, replay tra-
jectories were less biased; they were equally likely to depict mo-

tion in either direction regardless of the animal’s heading,

showed no preference for forward and reverse sequences, and

were more focused on distant regions of the track.
Neuron 96, 925–935, November 15, 2017 929
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Figure 4. Grid-Place Cell Coherence Is Accentuated during Periods of Task Disengagement

(A) Representative replay events incorporating at least one active grid cell. (i) Left: position decoding is based on place cell activity during replay event, with darker

shades indicating higher probability of position and best-fit trajectory superimposed in pink. Title indicates best-fit score. Right: Same is shown as at the left but

for grid cell activity, with best-fit trajectory from concurrent place cell activity superimposed in blue. Title indicates coherence between place and grid cells during

event. x axis, position on track (cm); y axis, time (ms). Position and head direction of cartoon rat indicate animal’s location and direction of travel during the event.

(ii) Same is shown as in (i) but for a replay event recorded from a different animal.

(B) Coherence between hippocampal and MEC LFP during engaged (green) and disengaged (amber) corner periods. For reference, the coherence observed

during running (>10 cm/s) is shown in red. x axis, LFP frequency (Hz); y axis, LFP coherence (r). Grey area covers portion of the LFP contaminated bymains noise.

(C) Mean grid-place cell coherence during hippocampal replay for engaged (green) and disengaged (amber) periods. Horizontal dashed line shows coherence

expected by chance. See also Figure S14.
Medial entorhinal cortex (MEC) grid cells are also known to

exhibit replay (O’Neill et al., 2017; Ólafsdóttir et al., 2016). During

rest, grid cells from the deep layers of the MEC, the primary

cortical projection target of the hippocampus, replay coherently

with place cells but do so with a slight delay (11 ms) (Ólafsdóttir

et al., 2016). Conversely, grid cells from the superficial layers of

theMEC, upstreamof the hippocampus, replay trajectories inde-

pendently, an effect that is more pronounced during task

engagement than rest (O’Neill et al., 2017). Plausibly, the trans-

mission of replayed trajectories from CA1 to the deep layers of

the MEC during quiescence might support consolidation,

whereas hippocampal-independent replay in superficial MEC

is more likely to be linked with navigational planning (Bush

et al., 2015) and need not engage deep MEC. To investigate

this distinction, we analyzed place cell replay that co-occurred

with at least one grid cell spike (Figure 4A, i and ii) recorded

from deep MEC (layers V/VI) in seven of the eight rats included

in the study. During both engaged and disengaged periods, we
930 Neuron 96, 925–935, November 15, 2017
observed LFP coherence between the hippocampus and MEC

in the theta (6- to 12-Hz) and ripple (150- to 250-Hz) bands (Fig-

ure 4B; Figure S14 for an alternative LFP coherence analysis be-

tween hippocampus and MEC). Specifically, we found grid cells

were coordinated with place cell replay during disengaged pe-

riods (grid-place coordination = 0.097 [SD= 0.08] versus chance,

p = 0.011), but not engaged periods (grid-place coordination =

0.074 [SD = 0.037] versus chance, p = 0.75), with the amount

of coherence between the two periods differing significantly

(engaged versus disengaged, p = 0.0035; Figure 4C). As such,

these results suggest a further functional distinction between

replay occurring during engaged and disengaged periods; with

the latter, engagement of cortical grid cells appear to provide a

mechanism capable of supporting system-level consolidation.

To what extent is the content of engaged reactivations impor-

tant for accurate task performance? To address this question,

we analyzed events preceding correct and incorrect turns sepa-

rately (Figure 5A, i and ii). Due to the relatively small number of
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Figure 5. Effect of Task Engagement on Reactivations Is Only Observed before Accurate Turns

(A) Representative reactivation events preceding incorrect and correct spatial choices. (i) Left: rat’s path (pink) is superimposed on position probability matrix,

with darker shades indicating higher probability of position. Erroneous portion of the path is shown in red. x axis, position on the track (cm); y axis, time (s); bin size,

500 ms. Right: position decoding of reactivation event is shown. x axis, position on the track (cm); y axis, probability of position. Rat location is indicated by the

position of the cartoon rat. x axis, track position (cm); y axis, probability of position. (ii) Same is shown as in (i) but for a reactivation event preceding a correct

spatial choice.

(B) Proportion of engaged (green) and disengaged (amber) events classified as congruent. Darker bars show proportions for events preceding a correct spatial

choice, lighter bars indicate errors. Error bars indicate 95% confidence interval based on bootstrapped data. Interaction between error/correct and engaged/

disengaged was not significant (p = 0.19, difference engaged correct versus engaged error = 9.7%, difference disengaged error versus disengaged correct =

3.4%). *ns refers to multiple pairwise comparisons for congruent reactivations; error engaged versus correct disengaged, p = 0.46; error engaged versus error

disengaged, p = 0.21; correct disengaged versus error disengaged, p = 0.14.

(C and D) Same as (B) but for local reactivations (C) and ripple power (D) during reactivations. Again, interaction was not significant for either analysis (local

reactivations, p = 0.14; difference engaged correct versus engaged error = 15.0%, difference disengaged error versus disengaged correct = 7.6%; ripple power,

p = 0.16; difference engaged correct versus engaged error = 3.463 10�10, difference disengaged error versus disengaged correct = 1.253 10�10). *ns refers to

multiple pairwise comparisons for local reactivations; error engaged versus correct disengaged, p = 0.77; error engaged versus error disengaged, p = 0.31;

correct disengaged versus error disengaged, p = 0.062.
errors (mean wrong turns per session = 8.88 [SD = 6.88]), ana-

lyses were limited to simple reactivation events. For events pre-

ceding correct turns, we saw, as before, a clear distinction

between engaged and disengaged reactivations (Figures 5B

and 5C). Thus, engaged reactivations had a tendency to be

congruent with, and local to, an animal’s position (62.79%

congruent versus chance, p < 0.0001; 81.5% local versus

chance, p < 0.0001), while disengaged reactivations exhibited

no such bias (52.34% congruent versus chance, p = 0.19;

71.76% local versus chance, p = 0.12; engaged versus disen-

gaged, both p values < 0.0001). However, for events preceding
incorrect turns, this distinction was absent. As expected, disen-

gaged events exhibited no bias toward congruent or local

reactivations (48.76% congruent versus chance, p = 0.94;

62.71% local versus chance, p = 0.89), but neither did, in this

instance, engaged events (54.44% engaged, p = 0.76 versus

chance; 67.35% local versus chance, p = 0.67; engaged

versus disengaged, both p values > 0.20; Figures 5B and 5C).

Indeed, the proportion of engaged local events preceding

incorrect turns was significantly lower than that preceding

correct turns (p < 0.0001; Figure 5C); a marginally significant ef-

fect in the same direction was observed for congruent events
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(p = 0.062; Figure 5B). However, due to the small number of error

events (engaged error events = 90, disengaged error events =

121), we did not find a significant interaction between levels of

task engagement and the accuracy of future decisions (based

on bootstrapping difference scores for events preceding correct

and erroneous turns, congruent analysis p = 0.19, local analysis

p = 0.14; Figures 5B and 5C).

To understand if the observed difference was also manifest at

the network level, we examined how power in the ripple band of

the LFP (150–250 Hz) varied between events preceding correct

and incorrect choices. Ripple power did not differ between dis-

engaged events preceding correct and incorrect turns (correct =

1.73 3 10�9 V2/Hz, error = 1.61 3 10�9 V2/Hz, p = 0.76; Fig-

ure 5D). However, for engaged events alone, we saw that ripple

power was reduced prior to errors (correct = 1.623 10�9 V2/Hz,

error = 1.273 10�9 V2/Hz, p = 0.021; Figure 5D). Again, we found

the interaction analysis was in the right direction but did not

reach statistical significance (p = 0.16). Thus, the content of

engaged reactivations predicts the accuracy of future decisions;

prior to making erroneous spatial decisions, reactivations were

less task focused andwere accompanied by a reduction in ripple

power.

Finally, to corroborate the suggestion that task-relevant reac-

tivations are important for accurate spatial behavior, we trained a

binary classification decision tree (Kohavi and Quinlan, 2002;

Rokach and Maimon, 2008) to predict the occurrence of errors

based on all three of the measures we had obtained for the pre-

ceding reactivations (see STAR Methods). Specifically, the deci-

sion tree was trained with data specifying for each event if it was

local to the animal, congruent with the current direction of travel,

as well as its mean power in the ripple band. Training and test

data were partitioned using a 10-fold cross-validation scheme;

on each of 10 iterations, the model was fit to 90% of the data

and tested on the remaining 10%, using different portions of

the data on each fold. Trees trained on reactivations occurring

during engaged periods predicted the outcome of subsequent

decisions correctly 62.8% of the time (p = 0.001 compared to

1,000 iterations of the model fit to shuffled data, mean shuffle

prediction accuracy = 49.6%). Similarly, training using just the lo-

cality and congruence of events also allowed for better-than-

chance prediction performance (60.3% accuracy, p = 0.02

versus shuffle). Note, it is likely that the classification accuracy

is not higher, precisely because reactivations occurring before

errors are heterogeneous. In contrast to the engaged periods,

disengaged reactivations were uninformative about the accu-

racy of subsequent decisions (55.2% decision accuracy,

p = 0.09 compared to 1,000 iterations of the model fit to shuffled

data, mean shuffle prediction accuracy = 49.8%). Thus, the con-

tent of reactivations during periods of task engagement predicts

whether the animal’s future choice will be accurate.

DISCUSSION

We have described findings showing a clear distinction between

replay occurring during periods in which animals were engaged

in a spatial task and periods in which they were simply resting on

the track. When animals were preparing to make a spatial deci-

sion and initiate movement, or when they had just completed a
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trajectory, replay tended to be focused on the immediate envi-

ronment, reactivating trajectories consistent with the animal’s

position and heading, in a forward direction. Conversely, during

prolonged stops at the corners of the track, replay trajectories

were distributed across the apparatus, were equally likely to

propagate in a forward or reverse direction, and incorporated en-

torhinal grid cells from the deep layers of the MEC. The transition

between these states occurred relatively rapidly, being task

focused for 10–15 s before and after movement, and the pres-

ence of task-focused reactivations during periods when animals

were engaged with the task was found to predict the accuracy of

their subsequent decisions. In sum, these results show that the

content of awake hippocampal reactivations can transition pre-

dictably and dynamically in accordance with task demands

and that the content of hippocampal replay may determine the

accuracy of spatial behavior.

Replay, particularly online replay, has been noted to support a

range of neurobiological phenomena, including memory consol-

idation (Girardeau et al., 2009; Wilson and McNaughton, 1994),

mental exploration (Derdikman and Moser, 2010; Gupta et al.,

2010; Ólafsdóttir et al., 2015), spatial planning (Pfeiffer and Fos-

ter, 2013), decision making (Singer et al., 2013), and reinforce-

ment learning (Foster and Knierim, 2012; Foster and Wilson,

2006). Indeed, each of these proposed roles enjoys some degree

of theoretical and empirical support. However, the extent to

which these functions correspond to different types of replay is

unclear. Our results suggest current task demands may dictate

the operational mode of replay and, thus, its content. Namely,

during periods of task engagement, when an animal might be ex-

pected to be planning or perhaps rehearsing future choices,

replay favors adjacent positions and preserves the normal

ordering of place cells, consistent with previous work linking

replay at decision points with behavior (Diba and Buzsáki,

2007; Pfeiffer and Foster, 2013; Singer et al., 2013). In contrast,

when animals are disengaged from the ongoing task, replay is

less focused, reactivating a heterogeneous mixture of positions

and paths (Davidson et al., 2009; Gupta et al., 2010). Plausibly,

this latter state, which reflects a composite of recent experi-

ences and engages downstream cortical targets, is likely to be

linked with consolidation, a view consistent with previous work

(Girardeau et al., 2009). Furthermore, we showed that successful

navigation is predicted specifically by the occurrence of replay

focused on the current task. Previous studies have shown per-

formance on spatial memory tasks correlates with the content

of replay (Dupret et al., 2010; Papale et al., 2016; Singer et al.,

2013), yet we are the first to show that only when an animal is

actively engaged in a task does the content of replay predict

the accuracy of future spatial decisions. While a causal link is still

to be proven, this predictive relationship strengthens the case

that different forms of replay perform different functions, indi-

cating that forward local replay is especially important for spatial

planning.

In contrast, it is less clear what function the heterogeneous

replay occurring during prolonged stationary periods might

support. In humans, periods of task disengagement are

known to be accompanied by activity in a default mode network

(Buckner et al., 2008), which can often incorporate the hippo-

campus and is characterized by recall of previous events and



autobiographical memories (Greicius et al., 2009; Gupta et al.,

2010; Spreng et al., 2009). As such, it is tempting to speculate

that replay during these periods has a role to play in learning

from past experience, potentially being important for memory

consolidation (Girardeau et al., 2009), or could reflect mental

exploration of the task environment (Derdikman and Moser,

2010; Gupta et al., 2010).

Finally, we also explored the dynamics of the transition be-

tween engaged and disengaged periods, showing that it was

rapid but by nomeans immediate upon corner arrival and depar-

ture. How might this switch be mediated? The prefronal cortex

(PFC) might possibly play an important role, given its interaction

with the hippocampus is known to be modulated by task de-

mands (Place et al., 2016). Another candidate region is the

MEC. Recent experimental work has shown that replay can orig-

inate independently in the MEC and hippocampus (O’Neill et al.,

2017). In turn, replay of MEC grid cells has been suggested to

play a role in navigation (Bush et al., 2015; Erdem and Hasselmo,

2012, 2014; Kubie and Fenton, 2012), while replay originating

from the hippocampus seems more likely to contribute to mne-

monic processes. As such, we propose that, during engaged

periods, task-focused replay is initiated in the MEC but ulti-

mately incorporates place cells. Conversely, during quiescence,

replay is mainly hippocampal initiated, and as such it reflects

the diverse range of trajectories that animals have recently

experienced.
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Buzsáki, G. (2015). Hippocampal sharp wave-ripple: a cognitive biomarker for

episodic memory and planning. Hippocampus 25, 1073–1188.

Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., and Wise, K. (1992). High-fre-

quency network oscillation in the hippocampus. Science 256, 1025–1027.

Cheng, S., and Frank, L.M. (2008). New experiences enhance coordinated

neural activity in the hippocampus. Neuron 57, 303–313.
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tween neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad.

Sci. USA 100, 2065–2069.

Skaggs, W.E., and McNaughton, B.L. (1996). Replay of neuronal firing se-

quences in rat hippocampus during sleep following spatial experience.

Science 271, 1870–1873.

Spreng, R.N., Mar, R.A., and Kim, A.S. (2009). The common neural basis

of autobiographical memory, prospection, navigation, theory of mind, and

the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21,

489–510.

Suzuki, S.S., and Smith, G.K. (1985). Single-cell activity and synchronous

bursting in the rat hippocampus during waking behavior and sleep. Exp.

Neurol. 89, 71–89.

van de Ven, G.M., Trouche, S., McNamara, C.G., Allen, K., and Dupret, D.

(2016). hippocampal offline reactivation consolidates recently formed cell as-

sembly patterns during sharp wave-ripples. Neuron 92, 968–974.

http://refhub.elsevier.com/S0896-6273(17)30904-2/sref20
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref20
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref20
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref21
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref21
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref21
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref22
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref22
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref22
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref23
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref23
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref23
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref24
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref24
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref24
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref25
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref25
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref25
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref26
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref26
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref26
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref27
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref27
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref27
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref28
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref28
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref29
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref29
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref29
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref30
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref30
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref30
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref31
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref31
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref32
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref32
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref33
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref33
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref33
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref34
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref34
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref35
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref35
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref35
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref36
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref36
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref37
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref37
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref38
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref38
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref38
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref39
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref39
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref39
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref39
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref40
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref40
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref40
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref41
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref41
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref42
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref42
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref43
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref43
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref43
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref44
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref44
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref44
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref45
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref45
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref45
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref46
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref46
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref46
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref47
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref47
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref48
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref48
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref48
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref49
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref49
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref49
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref50
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref50
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref51
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref51
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref51
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref52
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref52
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref52
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref52
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref53
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref53
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref54
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref54
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref54
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref55
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref55
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref55
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref56
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref56
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref57
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref57
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref58
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref58
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref59
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref59
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref59
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref60
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref60
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref60
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref61
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref61
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref61
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref62
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref62
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref62
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref62
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref63
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref63
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref63
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref64
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref64
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref64


Vanderwolf, C.H. (1969). Hippocampal electrical activity and voluntary move-

ment in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418.

Wierzynski, C.M., Lubenov, E.V., Gu, M., and Siapas, A.G. (2009). State-

dependent spike-timing relationships between hippocampal and prefrontal

circuits during sleep. Neuron 61, 587–596.

Wikenheiser, A.M., and Redish, A.D. (2013). The balance of forward and back-

ward hippocampal sequences shifts across behavioral states. Hippocampus

23, 22–29.
Wilson, M.A., and McNaughton, B.L. (1994). Reactivation of hippocampal

ensemble memories during sleep. Science 265, 676–679.

Wu, C.T., Haggerty, D., Kemere, C., and Ji, D. (2017). Hippocampal awake

replay in fear memory retrieval. Nat. Neurosci. 20, 571–580.

Zhang, K., Ginzburg, I., McNaughton, B.L., and Sejnowski, T.J. (1998).

Interpreting neuronal population activity by reconstruction: unified frame-

work with application to hippocampal place cells. J. Neurophysiol. 79,

1017–1044.
Neuron 96, 925–935, November 15, 2017 935

http://refhub.elsevier.com/S0896-6273(17)30904-2/sref65
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref65
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref66
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref66
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref66
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref67
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref67
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref67
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref68
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref68
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref69
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref69
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref70
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref70
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref70
http://refhub.elsevier.com/S0896-6273(17)30904-2/sref70


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Lister Hooded rats Charles River N/A, http://www.criver.com/products-services/basic-research/
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product/sigma/c5042?lang=en&region=US

Histoclear National Diagnostics Product code: HS-202, https://www.nationaldiagnostics.com/

histology/product/histo-clear-ii

Other

Tint Spike sorting software Axona Product code: COMP/TINT01, http://axona.com/products

Recording system (pre-amp & systems unit) Axona Product code: Dacq/USB64, http://axona.com/products

Omnetic connectors (microdrive assembly) Genalog Product code: A79026-001,http://genalog.com/genalog-

linecard/omnetics/

Single-screw mouse microdrive Axona Product code: MDMR-01M1, http://axona.com/products

4x16channel headstage preamplifiers Axona Product code: HS-116M1D, http://axona.com/products

Microwire (17um, platinum iridium) California Fine Wire

Company

Product code:100167, http://www.calfinewire.com/datasheets/

100167-platinum10iridium.html

NanoZ plating equipment Multichannel Systems nanoZ, http://www.multichannelsystems.com/products/nanoz

4xfine wire tethers Axona Product code: HS16-CAB3, http://axona.com/products
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact H. Freyja Olafsdottir

(h.olafsdottir@ucl.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eight male Lister Hooded rats were used in this study. All procedures were approved by the UK Home Office, subject to the restric-

tions and provisions contained in the Animals Scientific Procedures Act of 1986. All rats (330-400 g/13-18weeks old at implantation)

received two single-screw microdrives (Axona Ltd.) fixed to a pair of 2x16channels omnetics connectors (Genalog Ltd.), each car-

rying eight tetrodes of twisted 17mmHM-L coated platinum iridiumwire (90%and 10%, respectively; California FineWire), targeted to

the right CA1 (ML: 2.2mm, AP: 3.8mm posterior to Bregma) and left medial entorhinal cortex (MEC) (ML = 4.5mm, AP = 0.3-0.7 ante-

rior to the transverse sinus, angled between 8-10�). Wires were platinum plated to reduce impedance to 200-300kU at 1kHz (NanoZ).

After rats had recovered from surgery they were maintained at 90% of free-feeding weight with ad libitum access to water, and were

housed individually on a 12 hr light/dark cycle.

METHOD DETAILS

Recording
Screening was performed post-surgically after a 1-week recovery period. An Axona recording system (Axona Ltd., St Albans, UK)

was used to acquire positional data and the single-units, via 4x16channel headstage preamplifiers connected to the recording sys-

tem using 4 fine wire tethers (Axona Ltd., for details of the recording system and basic recording protocol see Barry et al. (2007)). The

position and head direction of the animals was inferred using an overhead video camera to record the location of two light-emitting
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diodes (LEDs) mounted on the animals’ head-stages (50Hz). Tetrodes were gradually advanced in 62.5um steps across days until

place cells (CA1) and grid cells (MEC) were identified.

Experimental apparatus and protocol
The experiment was run during the animals’ light period to encourage quiet restfulness during the rest session. Animals ran on a

Z-shaped track, elevated 75cm off the ground with 10cm wide runways. The two parallel tracks of the Z (190cm each) were con-

nected by a diagonal section (220cm). The entire track was surrounded by plain black curtains with no distal cues. During each track

session, animals were required to complete laps on the elevated Z-track. Specifically, the animals were required to run from the start

of Arm1 to the end of Arm3, stopping at the track corners and ends in order to receive a food reward. If the animals made awrong turn

at the corners, reward was withheld. Four animals (R2142, R2192, R2198, and R2217) were trained to run on the track for 3 days

before recording commenced. For the other animals (R2242, R2335, R2336, R2337), recordings were made from the first day of

exposure to the Z-track task.

Following the track session, rats were placed in the rest enclosure for 90min. The rest enclosure consisted of a cylindrically shaped

environment (18cmdiameter, 61cmhigh) with a towel placed at the bottom andwas located outside of the curtains which surrounded

the Z-track. Animals were not able to see the surrounding room while in the rest enclosure. Prior to the experiment, rats had been

familiarised with the rest enclosure for at least 7 days. Animals R2242, R2335, R2336 and R2337, were also placed in the rest enclo-

sure for 90 min prior to the first Z-track session on day 1 of the experiment. Recordings from this ‘pre-rest’ session were not analyzed

as part of this study. Following the rest session, animals completed a 20min foraging session in an open field environment. This ses-

sion was included to enable functional classification of MEC cells and was not analyzed in the current study.

Behavioral task performance
To index behavioral fluency we used two measures. First, we recorded the number of incorrect turns animals made at the corners of

the track in each session. Second, we calculated themean time animals took to complete each lap (total session duration / number of

laps). Learning across days was assessed by correlating these behavioral measures with the number of days of experience the

animal had had on the track.

Data inclusion/exclusion
Sessions where the median decoding error during track running (see ‘Data Analysis’ section below for details) did not exceed 30cm

(5% of the length of the track) were included in the analyses. Applying this criterion, 10 sessions were excluded. A further two ses-

sions (day 4 fromR2336, day 8 fromR2198) were excluded because of data loss due to the headstages becoming disconnected from

the microdrives during the rest session. In total 24 sessions were submitted for further analysis. Only reactivation/replay trajectory

events occurring at the two corners were analyzed, as the corners represented locations where the animal had a choice as to which

way to turn.

Data analysis
Ratemaps for the Z-track were generated after first excluding areas in which the animals regularly performed non-perambulatory be-

haviors (e.g., eating, grooming); the final 10cm at either end of the track and 5cm around each of the two corners. Similarly, periods

when the animals’ running speed was < 10cm/s were also excluded. To generate ratemaps, the animals’ paths were linearized, dwell

time and spikes binned into 2cm bins and smoothed with a Gaussian kernel (s = 5bins), firing rates were calculated for each bin by

dividing spike number by dwell time. Separate ratemaps were generated for runs in the outbound and inbound directions (mean cor-

relation between inbound and outbound ratemaps: r =�0.0032, 1-sample t-test: p = 0.74). To identify place fields, spatial bins whose

rate exceeded the mean firing rate of the cell on the track were only considered. Hippocampal cells were classified as place cells if

they exhibited firing greater than its mean rate for 20 contiguous bins and if the peak firing rate was > 1 Hz. Interneurons, identified by

narrow waveforms and high firing rates, were excluded from all analyses. Grid cells were identified using a method adopted previ-

ously (Ólafsdóttir et al., 2016). Spikes were manually sorted using Tint (Axona Ltd) spike-sorting software.

Two approaches were employed to analyze place cell reactivations occurring at the two corners (events occurring elsewhere were

not analyzed). The ‘reactivation’ analysis was used to identify which of the arms making up the track was most strongly represented

during events, and the replay ‘trajectory’ analysis identified reactivations of previously taken paths. The methods overlapped signif-

icantly for the two approaches, the main difference being the way we carried out the position decoding.

Putative reactivation events were identified based on the activity of hippocampal place cells using a similar method to Pfeiffer and

Foster (2013) and Ólafsdóttir et al. (2016). To identify reactivation events, multi-unit (MU) activity from CA1 place cells were binned

into 1ms temporal bins and smoothed with a Guassian kernel (s = 5ms). Periods when the MU activity exceeded the mean rate by 3

standard deviations were identified as candidate reactivation events. The start and end points of each candidate event were deter-

mined as the time when the MU activity fell back to the mean. Events less than 40ms long were rejected. Further, events were

excluded if the animals’ movement speed during the event exceeded 3cm/s or if the animals were located away from the two corners

(total number of events = 4425). Event detection for the replay trajectory analysis was identical to that for the arm reactivation analysis

except we included an additional cell activity criteria for selecting events. Namely, at least 15% of the place cell ensemble or more

than 5 place cells, whichever was higher, needed to be active during an event for it be included for analyses.
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For position decoding of reactivations, we summed the number of spikes per cell for each event, and a Bayesian framework (Da-

vidson et al., 2009; Ólafsdóttir et al., 2016; Zhang et al., 1998) was used to calculate the probability of the animal’s position in each

spatial bin given the observed spikes; the posterior probability matrix. Note, two posterior probability matrices were generated for

each event, one for inbound runs and one for outbound runs. We then summed the probabilities for each arm (a total of 6 arms given

the outbound and inbound runs were decoded separately), to identify which arm was being expressed most strongly during the

events.

A similar framework was applied to calculate the posterior probability matrices used for analysis of full replay trajectories, with the

following exceptions. Spike data were divided up into 10ms temporal bins and a probability distribution over position was calculated

for each temporal bin. The distribution corresponding to each temporal bin was normalized such that is summed to one. Temporal

bins containing no spikes were set to zero and hence did not contribute to either the trajectory fitting, in the case of place cells, or

coherence measure, in the case of grid cells.

To score the extent to which putative trajectory events represented a constant speed trajectory along the linearized Z-track we

applied a line-fitting algorithm (Ólafsdóttir et al., 2016). Lines were defined with a gradient (V) and intercept (c), equivalent to the ve-

locity and starting location of the trajectory. The goodness of fit of a given line (R(V,c)) was defined as the proportion of the probability

distribution that lay within 30cm of it. Specifically, where P is the probability matrix:

RðV ; cÞ= 1

n

Xn�1

t = 0

PðjxðtÞ � ðV :t:T + cÞ j%dÞ (1)

where t indexes the time bins of width T and d is set to 30cm. R(V,c) was maximized using an exhaustive search to test all combi-

nations of V between �50 m/s and 50 m/s in 0.5 m/s increments (excluding slow trajectories with speeds > �2 m/s and < 2 m/s)

and c between �15 m and 21 m in 0.01 m increments. This goodness of fit value was then normalized by dividing it by the summed

probability in the matrix (n.b. bins with no spikes were set to 0).

To assess candidate replay events for significance we carried out a spatial shuffle of the place cell ratemaps. Specifically, each

ratemap was ‘rotated’ by shifting it relative to the track by a random number of bins drawn from a flat distribution between 1 and

the length of the track minus 1 bin. The ratemap for each cell was rotated independently and in each case trailing bins were wrapped

around to ensure an equal number of bins were used for each shuffle. This process was repeated 100 times for each event and for

each shuffle we recalculated a goodness of fit measure (as described above). This enabled us to estimate the probability of obtaining

a given event by chance. Replay trajectory events were defined as those with an individual p value below 0.025 (a total of 513 tra-

jectory events). Shuffle and data distributions were compared using a 2-sample Kolmogorov-Smirnov test.

A similar approach was used to decode the animals’ locations during track running, except spikes were binned into 500ms tem-

poral bins and location was decoded from the posterior probability matrix using a simple maximum likelihood method. Within each

temporal bin an animal’s location was decoded to the bin with the highest posterior probability and this was compared with the

known true location (median decoding error for all sessions = 17.5cm, �3% of track length).

Reactivation analysis
Corner stopswere divided into two temporal sections. The first 5 s following an animal’s arrival at the corner and the last 5 s preceding

an animal’s departure from a corner were categorised as ‘engaged’ periods. Any time in between the two was categorised as ‘dis-

engaged’ periods. Reactivation events were analyzed separately for the two temporal sections. Temporal sections which lasted < 2 s

were excluded. If corner stops lasted less than 10 s, we treated the entire stop as an engaged period.

For track reactivation events we classified events as ‘congruent’ if the decoded arm belonged to the same run the animal was

carrying out at the time of the event. For example, if an animal was carrying out an inbound run and an arm on the inbound run

was reactivated. Alternatively, events were classified as ‘incongruent’. Furthermore, reactivation events were considered ‘local’ if

they decoded one of the two arms adjacent to the animal. For example, if the animal was located at corner1 during an outbound

run, and if arm1 or arm2 were reactivated. Note, for an event to be considered local it also had to be congruent. To estimate the pro-

portion of congruent/local events one would expect to obtain by chance we carried out a cell ID shuffle of each event. Namely, cells

active in an event were randomly reassigned to a different cell’s ratemap not active in the event and track decoding carried out on

this shuffled data. This process was repeated 100 times and the mean proportion of shuffled congruent/local events used as

chance level.

For the replay trajectory analysis, we used the same method to categorise events as congruent or incongruent. However, to cate-

gorise local events we estimated the mean position during an event and if it lay within 60cm of the animal’s actual position (ahead or

behind it) we considered the event to be local. We used an alternative approach to analyze the physical proximity of replay trajectory

events. Namely, we calculated the distance between the animal and the start as well as the end of the decoded replay trajectory.

Furthermore, we categorised events as ‘forward’ and ‘reverse’ on the basis of the gradient of the line fit to the place cell posterior

probability matrix. Forward events being characterized by a positive gradient which represent reactivation of place cells in the

same sequence as they were experienced on the track. Reverse events, characterized by a negative gradient, corresponding to re-

activation of place cells in the opposite order to which they would normally be active during running. Finally, events representing po-

sitions ahead of the animal were categorised as prospective. To estimate the proportion of congruent/local trajectory events one
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would expect by chance we randomly reassigned events to either engaged or disengaged periods 100 times, and computed the

mean proportion of local and congruent events from the shuffled data. For forward versus reverse classification we used 50% as

chance level.

Finally, events preceding correct turns at the corners were categorised as correct events and those preceding incorrect turns error

events.

To analyze the temporal dynamics of congruent/local reactivations during corner stops we divided each corner period into 2 s time

bins, and computed the proportion of congruent/local events for each bin up to 30 s following corner arrival/prior to corner departure.

For this analysis, we only included corner stops that were at least 30 s long. To estimate whether the obtained proportion for each

time bin was significantly above chance we binned the data into 5 s time bins, advancing in 2.5 s increments, and for each bin calcu-

lated whether the obtained proportion was significantly greater than chance level.

We carried out a number of control analyses to ascertain the differences obtained for different levels of task engagement could not

be accounted for by different LFP states underlying periods associated with task engagement and disengagement. First, to equate

themovement speeds during engaged and disengaged events we applied the following approach. Data from the disengaged periods

was subsampled to have the samemedian speed as the engaged periods – this was achieved by removing data corresponding to the

highest or lowest speed points first. Second, we excluded replay trajectory events whose total length was less than 2 m (thereby

removing replay trajectories that might results from theta phase precession or sequences), following O’Neill and colleagues (O’Neill

et al., 2017). Third, we limited the reactivation events to those whose log(theta/delta) ratio was at least one standard deviation below

the mean log(theta/delta) ratio measured during movement (> 10cm/s). Fourth, we limited replay trajectory events to those which

overlapped with a detected ripple (150-250Hz) event (see details of ripple detection in the section below).

Grid coherence analysis
To analyze coherence between spatial representations of place and grid cells during full hippocampal replay trajectories we followed

amethodwe had adopted previously (Ólafsdóttir et al., 2016). Briefly, we applied the sameBayesian framework to the grid cell spikes

as we did for the place cell spikes. Hence, for each replay event we also calculated a posterior probability matrix based solely on the

observed grid cell spikes. Rather than fitting straight-line trajectories to the periodic grid cell posteriors, we compared the best-fit line

from the concurrently recorded place cell posterior. Specifically, we fitted a line with the same intercept and slope as the concurrent

place cell event and calculated the proportion of the probability distribution lying within x/2cm of the line and divided this by the total

probability in the matrix (again, empty bins were set to 0). Where x was equal to the average size of the grid cell firing fields recorded

from that animal on the linear track. This value we used to index grid-place cell replay coherence. To estimate statistical significance

of the observed coherence scores we used the following shuffling procedure: each grid cell posterior was randomly paired with 100

non-concurrent place cell events from the same animal and from the same session. The line fitting procedure to estimate grid-place

cell replay coherence, described above, was then re-run on the randomly paired events. If the grid-place cell coherence score ob-

tained in the original data exceeded the 97.5th percentile of its shuffle distribution we deemed the coherence to be better than

chance.

To test whether grid-place cell coherence differed between engaged and disengaged periods we carried out the bootstrapping

procedure, described in the ‘Statistics’ section below.

Local field potential analysis
Local field potential (LFP) from CA1 was recorded at 4.8kHz throughout the experiment. To analyze sharp-wave ripples (Buzsáki

et al., 1992) and theta-band (O’Keefe and Nadel, 1978; Vanderwolf, 1969) oscillation the LFP was first down-sampled to 1.2kHz

and then band-pass filtered between 150 and 250Hz and 6-12Hz, respectively. An analytic signal was constructed using the Hilbert

transform, taking the form:

saðtkÞ= sðtkÞ+ iH½sðtkÞ� (2)

where H specifies the Hilbert transform, s(tk) is the filtered LFP signal, tk = kD, where k = 1,...,K indexes the time-step and D is the

inverse of the sampling rate. An instantaneous measure of power was found by taking the squared complex modulus of the signal at

each time point.

For the track-reactivation analysis we down-sampled this measure to 50Hz to match the position sampling rate. Furthermore, to

obtain amore stable measure for theta power we computed the ratio between theta and delta (2-4Hz) power for each recording sam-

ple and used the log-transformed theta/delta ratio as an estimate of instantaneous theta power (Jackson et al., 2006). For each re-

activation event, we computed the mean power in the log(ripple/theta) ratio band. For ripple event detection, we identified periods

where the ripple power exceeded 2.5std above the mean. The start and the end of a ripple event was marked by the point when the

power crossed the mean. Events lasting less than 40ms or more than 500ms were excluded and events separated by less than 40ms

were joined together. To assess LFP coherence between CA1 and deeper layers of the MEC we used the mscohere function in

MATLAB 2014a (Mathworks. MA). Coherence was analyzed for frequencies up to 200Hz.We also carried out an alternative LFP anal-

ysis using a method described by Masimore et al. (2004). Briefly, to analyze hippocampal LFP self-coherence we obtained the LFP
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spectrogram using the spectrogram MATLAB function (Mathworks, MA) and then correlated each frequency with itself and all other

frequencies. A similar method was used for analyzing coherence between hippocampal and MEC LFP, except in this instance cor-

relations were done between hippocampal and MEC LFPs.

R2142 was excluded from the LFP analyses due to problems with EEG recordings.

Model based prediction
Binary classification decision trees, a simple form of classifier, were used in order to predict, based on the preceding reactivation, if

an animal’s next turn would be correct or incorrect. First, because of the disparity in the number of error and correct events, correct

events were randomly subsampled to match the number of error events; the procedure was repeated 10 times, model training and

testing being completed independently for each iteration. Next, the data used to fit and test eachmodel was segregated further using

10-fold cross validation: reactivation events were randomly divided into 10 equally sized groups, on any given ‘fold’ 9 of these groups

were used to train themodel and the remaining group used to generate predictions, this process was iterated 10 times such that each

event was used once to make and test a prediction. Themodel was fit using the fitctree function in MATLAB 2016b (Mathworks, MA).

Three predictor variables based on the content of the replay were used: (1) how congruent and, (2) how local each event was, as well

as (3) the average ripple band power (150-250Hz) of the LFP during the event. For use in the model only, the congruence and locality

of events were described using continuous variables calculated as follows. Congruence measure: For each event the posterior prob-

ability over position was calculated in the same way as it was for the reactivation analysis. The probabilities for the congruent and

incongruent runs were each summed to give two numbers, Pc and Pi respectively. The congruence measure was then defined as:

Congruence=
Pc � Pi

Pc +Pi

(3)

Hence, a congruent event would yield a positive score. Localitymeasure: Again, the posterior probability over position correspond-

ing to the congruent and incongruent runs were used. The portions of both probability distributions corresponding to the two arms of

the maze adjacent (i.e., local) to the animal’s current position were identified and summed to give a single number, Pl. The same pro-

cedure was applied for the arm that was remote to the animal’s location yielding a value Pr. The locality measure was then defined as:

Locality=
Pl � Pr

Pl +Pr

(4)

The locality measure was calculated for all events regardless of their congruence.

Predictions were generated by applying the parameters of the trained decision tree to the remaining test data using the MATLAB

function predict. Prediction accuracy was defined simply as the total proportion of events that were classified correctly. To establish

significance, the same training and testing procedure was applied to shuffled datasets. Each shuffled dataset was generated by

randomly reallocating the response variable (i.e., correct/error) relative to the predictor variables (i.e., congruence, locality, ripple po-

wer); the relationship between the predictors was not permuted (e.g., congruence values were not shuffled relative to locality and

ripple power). This process was repeated 100 times for each of the 10 subsampled iterations, resulting in a distribution of 1,000 pre-

diction accuracies, against which the true prediction accuracy was ranked to generate a p value.

Histology
Rats were anaesthetised (4% isoflurane and 4L/minO2), injected intra-peritoneal with an overdose of Euthatal (sodium pentobarbital)

after which they were transcardially perfused with saline followed by a 4% paraformaldehyde solution (PFA). Brains were carefully

removed and stored in PFA which was exchanged for a 4% PFA solution in PBS (phosphate buffered saline) with 20% sucrose

2-3 days prior to sectioning. Subsequently, 40-50 mm frozen sections (coronal for CA1 and sagittal for MEC) were cut using a cryostat,

mounted on gelatine-coated glass slides, stained with cresyl violet and cleared with a clearing agent (Histo-Clear II). Images of the

sections were acquired using an Olympus microscope, Xli digital camera (XL Imaging Ltd.). Sections in which clear tracks from

tetrode bundles could be seen were used to confirm CA1 and MEC recording locations.

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess differences in the proportion of different event types (e.g., congruent events) for engaged and disengaged periods we

bootstrapped the data and computed the 95% confidence interval. Namely, we resampled the data with replacement 10,000 times,

each time calculating the proportion of a given event type for a particular event period.We then subtracted the proportion of events of

a given type occurring during disengaged periods from that occurring during engaged periods, and if 97.5% of the difference scores

exceeded 0wedeemed the result significant. To estimate if the obtained proportion significantly differed fromchancewe counted the

number of times the bootstrapped data exceeded the empirically derived chance level (for details of chance calculation see ‘Reac-

tivation analysis’ section above), if more than 97.5% of the bootstrapped data was greater than chance we deemed the data to be

significantly above chance. When comparing data and shuffle distributions we used a 2-sample Kolmogorov-Smirnov test. When
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comparing LFP power and grid-place cell replay coherence during engaged and disengaged periods we carried out the same anal-

ysis, but for each bootstrap iteration we computed means rather than proportion. All correlations were carried out using the Pearson

product-moment correlation coefficient.

To assess whether there was a significant interaction between task engagement and decision accuracy at the corners we carried

out the following analysis. We bootstrapped the data for engaged, disengaged, correct and incorrect events separately, obtaining a

bootstrapped distribution of %congruent/%local reactivations for each of the four categories (as described above). For each correct

and incorrect bootstrapped distribution pair, we computed a difference distribution (by subtracting the correct distribution from the

incorrect distribution). We then compared the engaged and disengaged difference distributions to assess whether the engaged dif-

ference scores were significantly higher than the disengaged difference scores; implying future decision accuracy modulates the

content of place cell reactivations more for reactivations occurring during engaged periods, compared to disengaged periods. If

more than 97.5% of the engaged difference scores exceeded the disengaged difference scores we deemed the interaction

significant.

All statistics, including definition of center, dispersion, precisionmeasures and exact values of n, are reported in the Results section

of the manuscript as well as in the figure legends.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available from the corresponding authors upon request.
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