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Boundaries are essential for navigators moving through space, 
and boundary geometry serves as a strong cue for reorienta-
tion1,2. When rodents and human children are disoriented 

after learning the location of a hidden reward, they search for the 
reward equally often in geometrically equivalent corners of rectan-
gular environments3–5. Consistent with this, human adults rely on 
boundary geometry for spatial updating, which is facilitated by the 
limited number of symmetry axes of the enclosure boundaries6. The 
learning of positions relative to a boundary, which recruits the hip-
pocampal formation, is thought to occur incidentally7,8 and posi-
tions closer to a boundary are remembered more accurately than 
those further away from it9.

Here we examined the possibility that boundary geometry can 
cause distortions in human spatial memory. We derive this hypoth-
esis from the distortions induced by environmental geometry on the 
grid-cell firing patterns in rodents10–12. Grid cells, which were first 
identified in the entorhinal cortex of freely moving rodents, typically 
exhibit sixfold periodic (hexadirectional) spatial firing that extends 
across the environment13. This pattern can be described in terms 
of its scale, as well as its offset and orientation relative to the envi-
ronment13,14. Along the dorsoventral axis of the medial entorhinal 
cortex, grid cells that share similar spacing and orientations are orga-
nized in discrete modules15–17. Grid cells have been directly recorded 
in human patients undergoing presurgical screening18,19, and—in 
human functional magnetic resonance imaging (fMRI) studies—
hexadirectional signals serve as a proxy measure for activity of the 
entorhinal grid system20. However, empirical evidence demonstrat-
ing the behavioural relevance of grid cells remains scarce.

Theoretical work suggests that regular grid patterns provide a 
compact code for self-localization and function as a metric of space, 
supporting path integration and vector-based navigation13,14,21–27. 

Thus, location is encoded by the conjunction of spatial phases 
across different modules—the population phase25,28—whereas the 
distance and direction between points can be derived from the rela-
tive difference in population phase25. With a regular underlying grid 
pattern, there should be a tight coupling between the distance sepa-
rating positions and the change in grid population phase. Larger 
distances in space correspond to greater changes in the population 
phase of the grid.

Environmental geometry strongly influences grid firing pat-
terns in rodents10–12,29. Changes made to the geometry of a familiar 
enclosure produce commensurate changes to the scale of grid pat-
terns, resulting in differential rates of change in population phase 
for travel in the changed and unchanged dimension15,17. Similar 
manipulations made while humans navigate in virtual reality (VR) 
environments produce complementary deficits in path integra-
tion30. Notably, in highly polarized enclosures such as trapezoids, 
grid patterns are highly distorted and less regular than in square 
control enclosures10. These changes are especially pronounced in 
the narrow part of the trapezoidal enclosure with reduced sym-
metry, less regular fields and a change of grid orientation—changes 
that do not appear to attenuate with continued exposure10. Similarly, 
in a quadrilateral environment with one slanted wall, firing fields 
of grid cells were consistently shifted away from the slanted wall, 
resulting in a local distortion of the grid11. Together, these findings 
indicate not only that environmental boundaries anchor spatial rep-
resentations, but also that the specific arrangement of environmen-
tal boundaries can distort spatial codes in the mammalian brain. 
However, research into the potential consequences of compromised 
grid patterns for human spatial cognition is lacking.

Here we investigated how environmental geometry—which is 
known to distort grid-cell-based computations—influences human 
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spatial cognition. Degraded grid patterns in a trapezoid are hypoth-
esized to carry less precise positional information than regular grid 
patterns, resulting in uncertainties about locations in space and the 
distances between them10,11,28. We therefore investigated the effects 
of boundary geometry on human spatial memory. We captured the 
effects of environmental geometry on grid patterns using the eigen-
vectors of the successor representation (SR; see Methods), which 
has been previously related to reinforcement learning and choice 
behaviour31–35. The eigenvectors of the SR exhibit grid-like proper-
ties in two-dimensional space, the regularity of which is degraded 
in a trapezoid32. We demonstrate that distorted eigenvector grid pat-
terns convey less-precise information about self-location in a trap-
ezoid and that this effect is most pronounced at the narrow end of 
the trapezoid environment. We tested whether memory for object 
positions is impaired in a trapezoid compared with a square con-
trol environment. Within the trapezoid, we expected worse mem-
ory performance, particularly in the narrow part of the enclosure 
compared with the broad part. Moreover, spatial computations per-
formed on the basis of distorted grid patterns are expected to exhibit 
systematic biases. SR grid patterns were, on average, stretched in the 
trapezoid relative to the square and compressed in the narrow part 
of the trapezoid compared with the broad part. We asked partici-
pants to judge distances between remembered locations and con-
trasted their estimates of identical true distances as a function of 
environmental geometry.

Results
Positional memory. We used immersive VR to investigate the effects 
of environmental geometry on human spatial memory (Fig. 1a). 
Wearing a head-mounted display (HMD), the participants navi-
gated different environments using a motion platform that trans-
lated real-world rotations and steps into virtual movement (Fig. 1b). 
The participants were familiarized with the VR setup in a circular 
environment before learning object positions in a square and a trap-
ezoid with the order of environments counterbalanced across par-
ticipants. The environments were of equal surface area, and distinct 
wall colours served as orientation cues. During the object-position 
memory task, the participants learned the positions of six objects in 
each environment; the object positions were organized into two trip-
lets with matched inter-object distances in both halves of an environ-
ment (Fig. 1c). The participants were tested on the positions of the 
objects after an initial learning phase by having to navigate to the 
remembered position of a cued object in each trial (Fig. 1d). To probe 
mnemonic distortions outside the encoding environment, the par-
ticipants judged pairwise distances between object positions in VR 
by walking the distance in the circular familiarization environment 
and on a computer screen by adjusting a slider on a subjective scale.

Does the disruption of regular grid patterns (Fig. 1e,f and 
Extended Data Fig. 1; two-sample t-test of grid similarity across 
environment halves, t98 = 10.81, P < 0.001, Cohen’s d = 2.14, 95% 
confidence interval (CI): 1.83–2.61) result in less accurate posi-
tional codes? To test this notion, we used a Bayesian decoder to 
decode locations using synthetic spike trains sampled from a 
population of SR grid patterns (n = 50), which were derived from 
the eigenvectors of successor representations from the square 
and trapezoid environment. Decoding was performed using a  
simple maximum-likelihood approach assuming uniform priors36. 
Decoding errors—the displacement between the true and decoded 
position—were larger in the trapezoid than in the square (Fig. 1g; 
two-sample t-test, t58 = 117.41, P < 0.001, d = 29.93, 95% CI = 26.06–
37.00), indicating that distorted grid patterns carry less positional 
information. To exclude the possibility that this reduction simply 
reflected the change in environmental aspect ratio, we verified 
that decoding accuracy for the smallest possible rectangular envi-
ronment that entirely encloses the trapezoid exceeds the decoding 
accuracy for the trapezoid itself (Extended Data Fig. 2; two-sample 

t-test, t58 = 64.52, P < 0.001, d = 16.44, 95% CI = 14.29–20.46). Thus,  
distorted grid patterns indeed underlie reduced positional decoding 
in the trapezoid.

Is human positional memory also degraded in a trapezoid? 
First, we compared raw positional-memory error—the displace-
ment between the response and correct position—between the two 
environments. Consistent with the degradation of positional infor-
mation observed in simulated grid patterns, the participants made 
larger errors in the trapezoid than the square (Fig. 2a; bootstrapped 
paired t-test, t36 = 2.71, P < 0.001, d = 0.45, 95% CI = 0.16–0.73; we 
analysed the behavioural data using bootstrap-based t-tests and 
report bootstrapped confidence intervals of the effect size through-
out; see Methods). To ensure that this effect was not due to the fact 
that the trapezoid allows larger errors owing to its elongated shape, 
we calculated memory scores that accounted for differences in the 
distribution of possible errors for each position37. We generated a 
chance distribution of 1,000 random locations that uniformly cov-
ered the entire environment and quantified the distance of each 
random location to the correct positions, resulting in a specific dis-
tribution of possible error distances for each position. For each trial, 
we calculated the memory score as 1 − the proportion of distances 
from the chance distribution smaller than the replacement error. 
This yielded a score ranging from 0 (low memory) to 1 (perfect 
memory) for each trial, taking into account the range of possible 
errors based on the correct position and environmental geometry 
(the overall distribution of memory scores is provided in Extended 
Data Fig. 4a). Importantly, memory scores were significantly lower 
in the trapezoid compared with the square (Fig. 2b,c; bootstrapped 
paired t-test, t36 = −2.30, P < 0.001, d = −0.38, 95% CI = −0.67 to 
−0.08), ensuring that decreased positional memory was not due to 
different distributions of possible errors as a result of the elongated 
shape of the trapezoid.

In rodents, grid patterns recorded from a trapezoid are known 
to be more strongly distorted in the narrow end of the environ-
ment than its base10. Similarly, we found that decoding errors 
derived from SR grid patterns were also larger in the narrow part 
of the trapezoid (Fig. 1h; two-sample t-test, t58 = 14.63, P < 0.001, 
d = 3.73, 95% CI = 3.12–4.82). To determine whether human spa-
tial memory differed within the trapezoid, we examined memory 
errors and found, as expected, that errors were larger in the nar-
row end (Fig. 2d; bootstrapped paired t-test, t31 = 2.75, P < 0.001, 
d = 0.49, 95% CI = 0.19–0.82). To control for the expected difference 
in error distributions, we again calculated memory scores and con-
firmed a robust difference between the two ends of the environment  
(Fig. 2e; bootstrapped paired t-test, t31 = −1.59, P = 0.023, d = −0.28, 
95% CI = −0.61–0.06). The difference in positional-memory errors 
between the narrow and broad parts of the trapezoid was higher 
than the 5th percentile of a surrogate distribution of error differ-
ences obtained by comparing positional memory between the 
halves of the square, indicating a significant difference between the 
environments (Extended Data Fig. 4c; Z-statistic = 2.18, P = 0.015). 
Taken together, the profile of positional memory observed is in line 
with our predictions derived from deformations of grid patterns 
with degraded positional memory in the trapezoidal environment 
compared with the square environment and more impaired per-
formance in the narrow part of the trapezoid than the broad part. 
Indeed, calculating the Bayes factor to quantify the likelihood of 
observing differences in positional memory between environments 
and trapezoid halves on the basis of the decoding errors of the SR 
grid model compared with a null model of no difference revealed 
strong evidence for the SR grid model (BF10 = 23.58; we report twice 
the natural logarithm of the Bayes factor throughout; see Methods).

During our task, in the absence of other positional cues, object 
locations had to be learned relative to the enclosure boundaries. 
Can differences in boundary proximity explain the pattern of results 
in line with more accurate memory for positions near boundaries9? 
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Owing to the specific geometry of the trapezoid, distances of object 
positions to the closest boundary were smaller in the trapezoid than 
in the square (bootstrapped paired t-test, t36 = −10.09, P < 0.001, 
d = −1.66, 95% CI = −2.23 to −1.30) and smaller in the narrow part 
of the trapezoid compared with the broad part (bootstrapped paired 
t-test, t36 = −18.34, P < 0.001, d = −3.02, 95% CI = −4.05 to −2.44). 
Thus, the boundary proximity model predicts better memory in the 
trapezoid and the narrow end of this environment—directly oppo-
site to the effects that we predicted and observed. Congruent with 
the beneficial role of boundary proximity, distances to the closest 
boundary were negatively correlated with memory scores in the 
square (Extended Data Fig. 4e; bootstrapped one-sample t-test, 
t36 = −4.42, P < 0.001, d = −0.73, 95% CI = −1.15 to −0.40). In the 
trapezoid, however, there was no statistically significant effect of 
boundary proximity on memory scores (bootstrapped one-sam-
ple t-test, t36 = −0.40, P = 0.524, d = −0.07, 95% CI = −0.39–0.27;  

bootstrapped paired t-test of difference between square and trap-
ezoid, t36 = −3.45, P < 0.001, d = −0.57, 95% CI = −0.96 to −0.26), 
suggesting a differential relationship of boundary proximity and 
positional memory in non-rectangular environments.

Differences in positional memory in both environments were 
not due to differential navigation behaviour. There were no statis-
tically significant differences in the excess path lengths of partici-
pants’ navigation paths from the start position of a given trial to 
the remembered location of the object in the trapezoid environ-
ment compared with the square environment or between the two 
parts of the trapezoid (Extended Data Fig. 5a,b; bootstrapped paired 
t-tests, square versus trapezoid: t36 = −0.95, P = 0.144, d = −0.16, 
95% CI = −0.48–0.18; broad versus narrow trapezoid: t36 = −0.11, 
P = 0.865, d = −0.02, 95% CI = −0.31–0.36). Furthermore, there 
were no statistically significant differences in walking speeds 
between the two environments or the sub-parts of the trapezoid 
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distances between the positions learned in VR and on a computer screen (vi and vii). The headset and screen icons indicate whether individual tasks 
took place in VR or on a computer screen, respectively. b, Schematic of the immersive VR setup with an HMD and a motion platform, which translated 
physical steps and rotations into virtual movement. c, An example configuration of object positions (circles). Two triplets of objects were positioned in each 
environment with one triplet in each half of each environment, yielding four triplets with matched distances between positions. d, To commence a test trial 
in the object-position memory task, participants walked to a start position, which was marked by a pylon, where they were cued with the image of an object. 
Subsequently, the participant navigated to the object’s remembered position, which they indicated by pressing a button, and received feedback. e, Example 
eigenvector grid patterns of the successor representation for a trapezoid (left; Extended Data Fig. 1a) and a square (right; Extended Data Fig. 1b) environment. 
f, SR grid patterns are distorted in the trapezoid, resulting in reduced correlation coefficients of spatial autocorrelations between the two trapezoid halves 
compared with the halves of the square. g,h, Position decoding errors based on spikes sampled from SR grid patterns are larger in the trapezoid than in the 
square (g) and larger in the narrow part of the trapezoid than the broad part (h), demonstrating that distorted grid patterns carry less positional information 
(Extended Data Fig. 2). i,j, Mean radial frequencies of SR grid patterns are lower in the trapezoid than in the square (i) and higher in the narrow part of the 
trapezoid than the broad part (j; Extended Data Fig. 3). For f–j data are mean ± s.e.m.; symbols indicate experimental conditions for which data is shown. 
Individual data points reflect iterations (g and h) or SR grid patterns (f, i and j).
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(Extended Data Fig. 5c,d; bootstrapped paired t-tests, trapezoid 
versus square: t36 = −0.01, P = 0.973, d = 0.00, 95% CI = −0.33–0.34; 
broad versus narrow trapezoid: t36 = 1.15, P = 0.079, d = 0.19, 95% 
CI = −0.14–0.51). There was no statistically significant relationship 
between Euclidean distances from the start positions to the cor-
rect object positions and spatial-memory performance (Extended 
Data Fig. 5e,f; bootstrapped one-sample t-tests, square: t36 = 0.17, 
P = 0.764, d = 0.03; 95% CI = −0.32–0.35; trapezoid: t36 = 0.58, 
P = 0.358, d = 0.10, 95% CI = −0.22–0.46; trapezoid broad: t36 = 1.37, 
P = 0.177, d = 0.23, 95% CI = −0.10–0.65; trapezoid narrow: 
t36 = −0.01, P = 0.987, d = 0.00, 95% CI = −0.36–0.32).

To investigate the navigation behaviour of the participants in 
more detail, we next examined their body and head orientation dur-
ing the replacement period relative to the direction from start to 
response position in each trial. Both body and head orientation of 
participants were significantly clustered around the directions from 
the start to response positions in the square (v-tests, body: v = 36.84, 
P < 0.001; head: v = 36.68, P < 0.001) and in the trapezoid (v-tests, 
body: v = 36.89, P < 0.001; head: v = 36.68, P < 0.001), and there was 
no statistically significant effect of environment on the distributions 
of mean orientations (Extended Data Fig. 6a,b; Watson–Williams 
tests, body: F1,72 = 0.02, P = 0.889; head: F1,72 = 0.14, P = 0.709). 
Similar results were obtained for the body and head orientations 
when comparing trials targeting objects in the broad and nar-
row parts of the trapezoid (Extended Data Fig. 6c,d; v-test, body 
broad: v = 36.73, P < 0.001; v-test, body narrow: v = 36.73, P < 0.001; 
Watson–Williams test, difference body: F1,72 = 1.53, P = 0.220; v-test, 
head broad: v = 36.54, P < 0.001; v-test, head narrow: v = 36.65, 
P < 0.001; Watson–Williams test, difference head F1,72 = 0.05, 
P = 0.830). We therefore do not think that the average facing direc-
tion of participants influences our key comparisons between the  
two environments or within the trapezoid. There was no statistically 

significant difference in the circular variance around each trial’s aver-
age body direction between environments (Extended Data Fig. 6e;  
trapezoid versus square: bootstrapped paired t-test, t36 = 1.06, 
P = 0.118, d = 0.17, 95% CI = −0.16–0.46) or the trapezoid parts 
(Extended Data Fig. 6g; narrow versus broad: bootstrapped paired 
t-test, t36 = 1.14, P = 0.076, d = −0.19, 95% CI = −0.13–0.54), but 
the circular variance of participants’ facing directions was greater 
in the trapezoid than in the square (Extended Data Fig. 6f; boot-
strapped paired t-test, t36 = 2.57, P < 0.001, d = 0.42, 95% CI =  
0.13–0.73) and greater in the narrow part of the trapezoid than 
the broad part (Extended Data Fig. 6h; bootstrapped paired t-test, 
t36 = 2.13, P < 0.001, d = 0.35, 95% CI = 0.04–0.69). This suggests that 
the participants relied more on visual exploration of the environ-
ment, decoupled from body rotations and chosen trajectories in our 
VR setup. Taken together, we observed no credible evidence of par-
ticipants being generally disoriented in the trapezoid or of funda-
mental differences in navigational strategies between environments. 
The object-position memory task was designed to probe memory 
for positions in the broad and narrow parts of the trapezoid rather 
than to evenly sample the environment. Participants therefore more 
frequently faced towards the narrow or broad end of the trapezoid 
when navigating towards remembered positions in the respective 
part of the environment (Extended Data Fig. 7a; v-tests, broad: 
v = 31.84, P < 0.001; narrow: v = 28.50, P < 0.001). Furthermore, the 
velocity of participants was higher along the long axis of the trap-
ezoid (Extended Data Fig. 7b; v-tests, broad: v = 27.03, P < 0.001; 
narrow: v = 13.51, P = 0.001). Do attentional resources and task 
demands differ between test environments? This seems unlikely 
as our design included a secondary task in which the participants 
memorized colour changes of an extramaze cue and later esti-
mated the durations between colour-change events (see Methods). 
There were no statistically significant differences between square 
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and trapezoid (Extended Data Fig. 10) in mean estimation errors 
(bootstrapped paired t-test, t36 = −0.10, P = 0.873 d = −0.02, 95% 
CI = −0.37–0.31) and absolute estimation errors (bootstrapped 
paired t-test, t36 = −0.32, P = 0.629, d = −0.05, 95% CI = −0.37–0.29)  
or the error variability (bootstrapped paired t-test, t36 = −0.81, 
P = 0.205, d = −0.13, 95% CI = −0.46–0.19).

Mnemonic distortions outside the environment. We next addres-
s ed whether computations based on spatial memories that are dis-
torted through environmental geometry are systematically biased 
outside the learning environment. We therefore asked participants 
to estimate distances between the positions of object pairs in two 
modalities, after the object-position memory tasks (Fig. 3a,b). In 
the VR version of the distance-estimation task, the participants 
reported distances by walking the respective distance between two 
remembered object positions in a circular enclosure, which was dif-
ferent from the original square and trapezoidal environments. In 
the desktop version of this task, the participants indicated these dis-
tances on a subjective scale using a computer mouse (see Methods). 
The participants successfully completed both versions of the task 
(Extended Data Fig. 8a,b; bootstrapped paired t-test of long versus 
short distances in VR version, t36 = 11.00, P < 0.001, d = 1.81, 95% 
CI = 1.38–2.53; mean ± s.d. of Spearman correlations between true 
and estimated distances in desktop version, r = 0.67 ± 0.19), dem-
onstrating the ability to compute never-experienced distances from 
pairs of remembered positions. Comparison of the distances walked 
in the VR version of the task to true Euclidean distances across all 
of the trials revealed an overestimation bias (bootstrapped paired 
t-test, t36 = 5.78, P < 0.001, d = 0.95, 95% CI = 0.60–1.47).

How could distorted grid patterns during encoding bias later 
distance estimates? The entorhinal grid system is thought to be a 
central component of the neural substrate that supports vector-
based navigation, which enables the calculation of navigational vec-
tors by comparing the grid population phases of positions22,25,27,38,39.  
In such a system, the difference in grid population phase between 
locations is expected to be proportional to the Euclidean displace-
ment between them25,28. Thus, for a participant to make accurate 
distance judgements, the relationship between the Euclidean dis-
tance and grid phase distance must be held constant in both the 

presentation and response context. If, for example, a distance was 
encoded with a population of grid patterns that had been compressed 
(increased frequency) then attempts to recapitulate that distance with 
unbiased grid patterns would result in an overestimation in Euclidean 
space. To determine whether successor-based grid patterns were sys-
tematically distorted in either the square or trapezoid environment, 
we applied a Fourier approach. Specifically, an analysis of the spatial 
frequency of the SR grid rate maps revealed a sparser packing of grid 
fields in the trapezoid than the square (Fig. 1i, Extended Data Fig. 3a; 
two-sample t-test, t98 = 3.98, P < 0.001, d = 0.79, 95% CI = 0.39–1.25; 
see Methods). Thus, grid phase changed more slowly as a function of 
distance in the trapezoid, which might result in underestimations of 
distances relative to the square28.

Taking advantage of our design in which participants learned 
a triplet of object positions in each half of an environment with 
matched inter-object distances, we compared distance estimates 
between environments. In line with stretched SR grid patterns, 
distances were judged to be shorter in the trapezoid than in the 
square in both the VR (Fig. 3c; bootstrapped paired t-test, t36 = 1.44, 
P = 0.025, d = 0.24, 95% CI = −0.08–0.61) and the desktop (Fig. 3d;  
bootstrapped paired t-test, t36 = 1.49, P = 0.027, d = 0.24, 95% 
CI = −0.07–0.56) version of the task. This effect was highly reli-
able between the two versions of the task (Extended Data Fig. 8c; 
Spearman r = 0.79, P < 0.001, 95% CI of correlation coefficient: 
0.61–0.88). Next, we tested for a difference between distance esti-
mates for the two parts of the trapezoid. Consistent with higher 
frequencies of the successor-based grid patterns in the narrow part 
of the trapezoid compared with the broad part (Fig. 1j, Extended 
Data Fig. 3b; two-sample t-test, t98 = 3.90, P < 0.001, d = 0.78, 95% 
CI = 0.39–1.21), the participants estimated that the same distances 
were longer in the narrow part of the trapezoid than in the broad 
part (Fig. 3e,f; VR: bootstrapped paired t-test, t36 = 2.09, P = 0.002, 
d = 0.34, 95% CI = 0.03–0.68; desktop: bootstrapped paired t-test, 
t36 = 3.46, P < 0.001, d = 0.57, 95% CI = 0.22–1.05). Again, the differ-
ence between remembered distances was highly correlated across 
the two modalities (Extended Data Fig. 8d; Spearman r = 0.70, 
P < 0.001, 95% CI of correlation coefficient: 0.36–0.89). We cal-
culated surrogate distributions of distance differences between 
the two halves of the square to contrast the two environments.  
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Fig. 3 | Distortion of distance estimates. a, The participants were cued to estimate and walk distances between the remembered positions of object pairs 
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In both versions of the task, the distance difference of the trapezoid 
halves differed significantly from the surrogate distributions of dis-
tance differences obtained from the square halves (Extended Data  
Fig. 8e,f; VR: Z = 4.05, P < 0.001; desktop: Z = 3.68, P < 0.001). These 
findings demonstrate that—across two versions of the task with very 
different response formats—distance estimates for identical dis-
tances are systematically biased in a manner that is consistent with 
the spatial frequencies of distorted SR grid patterns in the trapezoid. 
We assessed the likelihood of observing longer distance estimates 
in the square and in the narrow end of the trapezoid, given differ-
ences in spatial frequency of the SR grid patterns. Again, the Bayes 
factor strongly favoured the SR grid model over the null model  
(VR: BF10 = 15.31; desktop: BF10 = 18.68).

Reconstruction of remembered locations. What is the structure 
of deformed memory maps? To reconstruct remembered object 
positions from estimated inter-object distances, we applied mul-
tidimensional scaling (MDS) to the data obtained in the desktop 
version of the task (Fig. 4a). We extracted coordinates along two 
dimensions (Extended Data Fig. 9a), which we mapped onto the 
true coordinates of the trapezoid using Procrustes analysis to match 
the two configurations of the coordinates (Fig. 4a, Extended Data 
Fig. 9b; see Methods). We quantified the deviance between the true 
and reconstructed positions after Procrustes analysis and compared 
this Procrustes distance to a surrogate distribution of distances that 
were obtained by shuffling object-position assignments to assess 
the statistical significance of the reconstruction accuracy (Fig. 4b). 
The observed Procrustes distances were significantly lower than the 
5th percentiles of the surrogate distributions (Fig. 4c; bootstrapped 
paired t-test, t36 = −8.48, P < 0.001, d = −1.39, 95% CI = −2.26 to 
−0.89), reflecting a close match between true and reconstructed 
positions. Importantly, recalculating the above-described memory 

scores using the reconstructed positions led to higher scores com-
pared with the true positions (Fig. 4d; bootstrapped paired t-test, 
t36 = 3.09, P < 0.001, d = 0.51, 95% CI = 0.18–0.95), providing direct 
evidence that positional memory is used to compute distances 
between objects and that distorting the spatial map also distorts dis-
tance estimates. This effect was also found to be significant when 
we excluded trials that targeted objects for which the reconstructed 
position lay outside the environment (bootstrapped paired t-test, 
t36 = 1.42, P = 0.023, d = 0.23, 95% CI = −0.08–0.64). The increase 
in memory scores could be explained if, for each position, recon-
structed positions reflect remembered positions in the trapezoid. 
To quantify this, we calculated the error vectors between the true 
and remembered positions in the object-position memory task and 
compared these to the error vectors of the reconstructed positions. 
We observed a strong relationship between the two sets of error 
vectors as indicated by a significant correlation of their average 
lengths (Fig. 4e; Pearson r = 0.62, P < 0.001, 95% CI of correlation 
coefficient: 0.33–0.79) and a clustering of their orientations (Fig. 4f;  
angular difference of vectors significantly clustered around 0,  
v-test, v = 13.77, P = 0.001). These findings show that positions  
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reconstructed on the basis of distance estimates were shifted in  
the same direction as remembered positions and that the magni-
tude of this shift corresponded to the size of the errors in the object-
position memory task.

Discussion
Here we used immersive VR to demonstrate that environmental 
geometry can distort human spatial memory. Our data show that 
positional memory is impaired in a trapezoid environment com-
pared with a square environment and that the deficits are most pro-
nounced in the narrow end of the trapezoid environment. These 
findings are consistent with environmentally induced distortions 
observed in rodent entorhinal grid patterns. Equally, they closely 
mirror predictions drawn from a model grid-cell system derived 
from the eigenvectors of the SR. Importantly, mnemonic distor-
tions persisted outside the environment—participants estimated 
identical distances to be different between the square and trapezoid 
environments as well as between the narrow and broad parts of the 
trapezoid, underscoring an effect of environmental geometry dur-
ing encoding on subsequent memory, in line with spatial frequen-
cies of SR grid patterns. Moreover, remembered positions that were 
reconstructed from these distance estimates directly reflected posi-
tional memory during the learning task.

Our findings demonstrate that environmental geometry has a 
strong impact on human spatial memory. We predicted this influ-
ence from rodent data in which the sixfold symmetry of grid firing 
is distorted in a trapezoidal enclosure, with the most pronounced 
distortions in the narrow part of the enclosure10. We show degraded 
positional memory as a function of environmental geometry, in line 
with larger position decoding errors based on the eigenvector grid 
patterns of the SR, as well as with impaired positional decoding from 
simulated grid cells with locally distorted firing patterns11. Together 
with evidence for impaired path integration with disrupted grid-
cell firing in rodents40 and increased path integration errors in older 
adults with weaker hexadirectional signals measured with fMRI41, 
previous studies support the interpretation that the integrity of the 
grid pattern is beneficial for human spatial memory. The strength 
of hexadirectional signals and the directional coherence of the ori-
entation of these signals across voxels in the entorhinal cortex are 
associated with memory performance across participants who are 
learning object positions in circular enclosures20,42. Our findings 
dovetail with this notion as they demonstrate that environmental 
geometry, which is known to compromise grid patterns in rodents, 
influences spatial cognition in a within-subject design.

We further demonstrate that distortions persist beyond the 
encoding environment. The grid-cell population phase is thought to 
provide a mechanism to encode spatial positions and calculate vec-
tors between locations25. As such, distortions of the grid pattern can 
decouple the rate of change in population phase from distance in 
the environment28. Two positions separated by a given distance will 
be encoded more similarly when grid patterns are of lower rather 
than higher spatial frequency. When estimating distances between 
positions, more-similar grid population phases will result in shorter 
distance estimates22,25,27,38,39. Consistent with the lower spatial fre-
quencies of SR grid patterns, the participants estimated identical 
distances to be shorter in the trapezoid than in the square. Within 
the trapezoid, SR grid patterns had a higher spatial frequency in 
the narrow end and, consistent with this, participants estimated dis-
tances to be greater in the narrow part of the trapezoid compared 
with the broad part.

Our results show that human spatial memory was distorted in a 
trapezoidal environment, suggesting that boundary geometry can 
distort mnemonic representations. Previous studies have investi-
gated the role of trapezoidal boundary geometry for spatial updating 
and reorientation. Evidence suggests that trapezoid room geom-
etry can be used successfully for spatial updating in the absence of  

additional orientation cues. A limited number of symmetry axes 
was suggested to facilitate the maintenance of the orientation of a 
person in angular environments, in contrast to circular environ-
ments6. Consistent with this, human participants successfully rely 
on trapezoidal boundary geometry for heading retrieval43,44. In our 
task, wall textures provided additional unambiguous non-geometric 
cues for orientation in both environments, making it unlikely that 
participants were disoriented in either the square or the trapezoid 
environments5,44. This supports our interpretation that the effects 
reflect differences in positional memory rather than being driven 
by disorientation or differences in navigation behaviour. Learning 
positions relative to environmental boundaries recruits the hip-
pocampal formation and is thought to occur incidentally7,8. Recent 
evidence suggests that positions near a boundary are remembered 
more accurately than positions in the centre of a rectangular enclo-
sure9. Although we replicate the finding that boundary proximity is 
beneficial for positional memory in the square, this cannot explain 
the pattern of results we observed. Positions in the trapezoid were 
closer to the nearest boundary than in the square and, within the 
trapezoid, positions in the narrow part were closer to a boundary 
than in the broad part. Our findings suggest that boundaries can 
also distort human spatial memory, in line with grid pattern distor-
tions through environmental geometry.

Previous studies suggested that changing environmental 
boundaries might influence human spatial cognition in ways that 
are consistent with the findings from studies of rodent place45 and 
grid cells13. Focusing on path integration, which is one of the core 
functions assumed for grid cells13,14,21, biases in human naviga-
tion have been reported to follow predictions derived from grid-
cell firing30. In particular, the experimental design in Chen et al.30 
built on the observation that rodent grid patterns rescale to match 
changes made to the geometry of already familiar enclosures15. 
Expansions and compressions of boundaries relative to preceding 
trials resulted in under- and overshoots of the return path in a path 
integration task, when the path included a component along the 
manipulated boundary dimension30. This illustrates how, through 
environmental change, altering the rate of change in grid-cell 
population phase in relation to distance travelled can introduce 
biases in human navigation28,30. As described above, translating 
this idea to the memory-based estimation of distances between 
locations might explain the diverging judgements of identical 
distances observed in our data. Expansions and compressions of 
virtual environments have further been demonstrated to impact 
spatial memory in humans and, under conditions of environmen-
tal change, positional memory follows models of place cells and 
boundary proximity46,47. Whereas the studies described above indi-
cate how boundary manipulations in familiar environments influ-
ence spatial behaviour, we built on work showing that distorted 
grid patterns persist in static trapezoid environments even with 
prolonged experience10. Our findings suggest that distortions of 
the spatial metric of the brain can result in mnemonic distortions 
under constant boundary conditions within a specific environ-
ment and even outside of this encoding environment.

We opted for a purely behavioural experiment; however, our 
hypotheses, experimental design and analysis directly built on find-
ings from electrophysiological recordings of grid cells in rodents10. 
We used highly immersive VR technology to enhance the impact of 
environmental geometry on spatial cognition and engage proprio-
ceptive, vestibular and motor systems during the task. At present, 
immersive VR does not allow the concurrent recording of neu-
ral data. The contribution of locomotor cues to the experience of 
navigation in general has been emphasized previously48 and recent 
studies in rodents have used gain manipulations in VR to empha-
size the contributions of locomotor cues to grid-cell firing specifi-
cally49,50. Having established the impact of environmental geometry 
on human spatial cognition, an exciting question for future research 
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would be to combine manipulations of environmental geometry 
with neuroimaging techniques such as fMRI to study the deforma-
tions of the cognitive map that we describe here in the brain. To do 
so, an important measure could be the hexadirectional signal that 
can be observed in the human entorhinal cortex20. Beyond fMRI, an 
exciting future avenue is created by the development of new magne-
toencephalography systems, which might enable the combination of 
immersive VR with recordings of neural data51.

As large parts of human indoor navigation take place in rectangu-
lar rooms, the novelty of a trapezoidal enclosure in our task might be 
considered to be a factor that contributed to impaired performance 
compared with the square. However, such an effect of unfamiliar-
ity with polarized environments would not predict the observed 
within-environment differences in performance. Furthermore, we 
did not observe statistically significant differences in the walking 
speeds of participants between environments or in the directness 
of their paths from the start to the remembered object positions. 
Thus, none of our control measures provided credible evidence for 
fundamental differences in navigational performance between the 
environments by themselves. Moreover, we observed no credible 
evidence that the environmental manipulation affected the detec-
tion and encoding of colour-change events, arguing against an effect 
of increased task demand in the trapezoid environment as sufficient 
attentional resources were available for this secondary task.

Importantly, the effects that we observed in positional memory 
persisted outside the environment as demonstrated by the differ-
ential estimates for matched distances between positions within 
the different parts of the trapezoid. These distortions were highly 
reliable across response modalities, demonstrating a general, task-
invariant mnemonic effect. Our findings agree with asymmetric 
distance judgements between landmarks and non-landmarks as 
well as overestimations of distances as a function of intermedi-
ary boundaries52–57. Beyond boundaries separating positions, our 
findings demonstrate that distance estimates can be influenced 
through the geometric arrangement of boundaries. The response 
profiles observed in the VR version of the task revealed a general 
tendency to overestimate distances between positions, consistent 
with previous studies that report overestimations of navigated dis-
tances58 and spatial scale in map drawings59. We used the distances 
that were estimated on a subjective scale in the desktop version of 
the task to reconstruct remembered positions. Accounting for the 
distortions in the memory of the participants by using these recon-
structed positions to recompute memory scores yielded increased 
performance scores. This illustrates the close match between posi-
tions reconstructed from distance estimates and positional memory  
within the environment, and demonstrates that—consistent with 
the formation of cognitive maps60—distances that were never 
directly experienced in the task were computed from remembered 
positions. Grid cells have been suggested to support this kind of 
vector computation25,27. This is further in line with evidence for  
the involvement of the entorhinal grid system in imagination61,62 
and theoretical accounts that propose a role for spatially tuned cells 
in memory63–65.

Environmental geometry systematically biased memory-based 
computations outside the trapezoid environment, thereby linking 
our findings to a growing body of literature that implicates grid-
cell computations in cognitive functions beyond navigation66. 
For example, grid-like hexadirectional signals were also observed 
during trajectories through an abstract feature space, which was 
spanned by the dimensions of neck and leg length of stick figure 
birds67. Collectively, these findings indicate a role of the entorhinal 
grid system in mapping cognitive spaces66. As proposed for navi-
gable space13,14,21,25,26, the regular firing patterns of grid cells might 
provide a metric for these spaces, enabling the efficient encoding 
of specific stimuli located at different positions within a space. 
Speculatively, correlated feature dimensions or feature spaces in 

which subsets of feature combinations are impossible might distort 
how grid cells map these spaces in a similar way as environmental 
geometry distorts grid-cell firing patterns, resulting in biased rep-
resentations similar to the distortions of spatial memory observed 
in this study.

In conclusion, our data show distortions of human spatial mem-
ory that are consistent with the changes induced in rodent grid-cell 
activity by the geometry of highly polarized enclosures. These dis-
tortions persist outside the environment, indicating that environ-
mental geometry has an enduring impact on memory. In line with 
the proposed roles for grid cells in navigation and mapping feature 
dimensions beyond navigable space, these findings suggest that 
environmental geometry might be able to distort the metric of cog-
nitive representations.

Methods
Participants. We recruited 53 participants between the age of 18 and 30 from the 
Norwegian University of Science and Technology. All of the participants provided 
written informed consent before participation, and all of the research procedures 
were approved by the regional ethics committee (REC North, 2017/153). The 
participants were compensated for their time at a rate of kr100 per hour. The 
sample size was determined on the basis of a power calculation assuming a small 
to medium effect (d = 0.4) of environmental geometry on human spatial cognition, 
and resulting in a sample size of 52 to achieve a statistical power of 80% (α = 0.05, 
two-tailed test). A total of 39 participants (mean age 23.8 ± 2.5 years, 36% female) 
completed the experiment (14 incomplete datasets due to technical difficulties with 
the VR setup or motion sickness). Two participants were excluded owing to poor 
memory performance, which was defined as average replacement errors of more 
than 1.5× the interquartile range larger than the upper quartile of average errors in 
the sample. Thus, 37 participants entered the analyses.

Overview. We designed our experiment to test distortions of spatial memory as a 
function of environmental geometry. An overview of the experimental structure is 
provided in Fig. 1a. The participants were first familiarized with the VR setup  
(Fig. 1a, (i)) before beginning the object-position memory task in the first 
environment. The object-position memory task (Fig. 1a, ii and iv) was performed in 
a trapezoidal or square environment for 20 min each, and the order of environments 
was counterbalanced across participants. After navigating an environment, the 
participants were prompted to estimate the durations between occasional colour-
change events encountered in that environment (Fig. 1a, iii and v). In the final 
two tasks, the participants were asked to estimate the distances between pairs of 
objects in VR and on a computer screen (Fig. 1a, vi and vii), respectively. The 
design of each task and the corresponding analyses are described in detail in the 
sections below. All of the analyses were performed using MATLAB (release 2017a, 
MathWorks) and statistical tests (two-tailed unless stated otherwise; α = 0.05) were 
performed using resampling procedures as implemented in EEGLAB68. Specifically, 
test statistics were compared against a surrogate distribution obtained from 10,000 
bootstrap samples respecting within-participant dependencies. Respecting the 
dependent nature of our data, Cohen’s d was calculated as the mean difference 
divided by the s.d. of the difference scores (compare with equation 6 in ref. 69) 
and the 95% CIs of this effect size were bootstrapped (10,000 iterations) using the 
Measures of Effect Size Toolbox70. Circular statistics were implemented using the 
MATLAB-based Circular Statistics Toolbox71. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Virtual reality. Aiming to maximize the feeling of immersion and, therefore, 
the impact of environmental features, we used state-of-the-art VR technology 
consisting of an HMD (Oculus Rift CV1) and a motion platform (Cyberith 
Virtualizer). The participants wore low-friction overshoes and were strapped into 
a harness attached to the motion platform’s ring system, allowing free rotations. To 
navigate the virtual environments, the participants were instructed to lean slightly 
into the ring construction to slide the front foot backwards across the sensors of 
the low-friction base plate of the motion platform while taking a step forward 
with the back foot (Supplementary Video 1), generating translational movement 
in the current forward direction determined by the orientation of the participant 
in the ring system72. Head movements were tracked in three dimensions using 
the HMD’s tracking system and the virtual environments were displayed to both 
eyes separately at a resolution of 1,080 × 1,200 px and a refresh rate of 90 Hz. The 
virtual environments were created and presented using the Unreal Engine (v.4.13.2, 
Epic Games, 2017) and the eye height of the participants was set to 1.80 vm. 
The participants were familiarized with the VR setup in a circular environment 
(45.74 vm in diameter), which consisted of a grass floor that was curtailed by a 
wall (height 3.75 vm). A set of trees that were spread around the outside of the 
environment served as cues for orientation. During familiarization, the participants 
practiced walking and turning by navigating the circular environment to collect 
coins that appeared at random positions in the environment. The participants were 
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instructed to walk towards the coins and collect them through button presses on a 
handheld controller. Moreover, this familiarization period served as a practice for 
the time-estimation task (see below).

Object-position memory task. The participants performed an object-position 
memory task, during which they iteratively learned the positions of six objects 
in a trapezoidal environment (36 vm × 76 vm × 8 vm × 76 vm); the lengths of the 
sides were proportional to the enclosure that rodents explored in a previous study 
that reported distortions of grid-cell firing patterns10. To establish a behavioural 
baseline, the participants also performed this task in a square control environment 
(40.27 vm × 40.27 vm) with an equal surface area. To enforce spatial learning 
on the basis of environmental geometry, there were no distal cues outside the 
environment. To facilitate orientation, each wall was presented in a unique colour. 
Both environments had a grass floor, and a blue sky with moving clouds was visible 
(Fig. 1b). The participants performed the task for 20 min in each environment, 
and the order was counterbalanced across participants. In each environment, the 
participants learned the positions of six everyday objects, which were presented as 
three-dimensional models. The assignment of objects to arenas and positions was 
randomized across participants.

In each trial of an initial learning phase, the participants navigated to a start 
position, which was indicated by a traffic cone. An object was then shown at its 
predefined position in the environment and the participants were instructed to 
navigate to the object, collect it by button press and memorize its position. Each 
object was shown once and the order of objects was randomized. In the subsequent 
test phase (Fig. 1b), the participants again navigated to start positions. On arrival 
at the start position, a picture of one of the objects was shown as a cue for 3 s in 
front of the participant, prompting the participants to navigate to where they 
remembered this object was in the environment. The participants indicated the 
remembered position by button press after arrival and received feedback about 
their accuracy in the form of one of five smiley faces. The object then appeared 
at its correct position and the participants collected it before the beginning of the 
next trial. The participants completed 30.54 ± 6.71 and 30.38 ± 8.09 (mean ± s.d.) 
test trials in the square and trapezoid environments, respectively, and there was no 
statistically significant difference between environments in the number of trials 
(bootstrapped paired t-test, t36 = 0.18, P = 0.759).

The order of trials was randomized for mini-blocks of six trials so that, within 
a mini-block, each object was sampled once and no two consecutive trials sampled 
the same objects. A triplet of object positions (Fig. 1c) was randomly generated for 
each participant with a minimum distance of 11 vm between object positions and 
a minimum of at least 3 vm to the nearest boundary. Positions were constrained 
so that the connection between two objects was parallel to the long axis of the 
trapezoid or one of the walls of the square. The third object was placed at an 
angle ranging from 90° to 120° relative to the first two with the same distance to 
one of the objects as between the first two. Such a triplet of positions was placed 
in both the narrow and broad parts of the trapezoid, defined on the basis of the 
midpoint of its long axis and the left and right parts of the square. Placing triplets 
of objects with matched distances in each part of the environment enabled direct 
comparisons of remembered distances between environments and their sub-
parts (see the ‘Distance-estimation tasks’ section). As cues were only shown after 
participants arrived at the start position of a given trial, the participants never 
walked the direct path between two objects. There were no statistically significant 
relationships between the distance from start positions to target object positions 
(mean ± s.d., square: 18.66 ± 4.65 vm; trapezoid: 19.92 ± 8.50 vm; trapezoid 
broad: 21.10 ± 10.95 vm; trapezoid narrow: 18.73 ± 4.67 vm) and spatial memory 
performance (Extended Data Fig. 5e,f).

Positional memory. Raw positional-memory errors were quantified as the 
Euclidean distance between the correct position of an object in the environment 
and the position remembered by the participant. To limit the influence of 
outlier trials, we excluded trials with errors larger than 1.5× the interquartile 
distance above the upper quartile of errors for each participant (mean ± s.e.m. 
number of trials excluded per participant = 3.35 ± 0.26) from all further analyses. 
Average positional-memory errors were compared across environments using 
a bootstrap-based paired t-test (Fig. 2a). To account for the fact that, despite 
the equal area, larger errors are possible in the trapezoid compared with the 
square control environment, we subsequently quantified performance using 
memory scores. Specifically, we generated a distribution of 1,000 random 
locations uniformly covering each environment and, for each trial, quantified the 
proportion of locations that were further away from the correct object position 
than the position indicated by the participant. Importantly, calculating memory 
scores on the basis of the distribution of possible errors for each target position 
yields a measure that is comparable across positions and environments37 with 
a chance level of 0.5 for random performance and scores closer to 1 for high 
performance. To test the hypothesis of degraded spatial memory in the trapezoid, 
memory scores were compared across environments using a bootstrap-based 
paired t-test (Fig. 2b).

Next, we aimed to test the more specific hypothesis of increased degradation 
of positional memory in the narrow part of the trapezoid compared with the broad 
part, derived from the larger distortions of firing patterns of grid cells in this part 

of the environment10. We used a bootstrap-based t-test to test whether positional-
memory errors differed between the narrow and broad parts of the trapezoid  
(Fig. 2d). Outlier participants were excluded on the basis of our standard criterion 
of values more than 1.5× the interquartile range above or below the upper or lower 
quartile, respectively (the full dataset is provided in Extended Data Fig. 4b).  
Distributions of possible errors can differ also for positions within the same 
environment. We therefore also tested whether memory scores differed between 
the two parts of the trapezoid (Fig. 2e).

As the rotationally symmetrical geometry of the square does not predefine 
how to calculate the difference in positional memory, we created a surrogate 
distribution by shuffling which half of the environment was to serve as the 
subtrahend and minuend for the error difference across participants. For each 
permutation, we calculated the error difference for objects located in the two 
halves of the square. The positional-memory error difference observed in the 
trapezoid was smaller than the 5th percentile (one-tailed test) of the surrogate 
distribution obtained from 10,000 permutations (Extended Data Fig. 4c). The 
shape of the surrogate distribution did not differ statistically from normality 
(Kolmogorov–Smirnov test, D = 0.01, P = 0.277); we therefore used the inverse of 
the normal cumulative distribution function to convert the P value reflecting the 
number of occurrences of smaller memory ratios in the surrogate distribution 
into a Z-statistic. To visualize response behaviour in the two parts of the trapezoid, 
we collapsed across all trials from all of the participants for objects located in 
the broad and narrow parts of the arena. Response positions were centred on the 
respective true positions and divided into 50 × 50 square bins with a side length of 
0.6 vm. The resulting histogram was smoothed using a Gaussian kernel with an s.d. 
of 0.5 vm and plotted as a heat map (Extended Data Fig. 4d). To test the influence 
of the distance to the nearest boundary on positional memory, we calculated 
the Pearson correlation between the Euclidean distance to the closest boundary 
and the memory scores across all of the trials from an environment for each 
participant. We tested the resulting correlation coefficients against 0 and between 
the environments using bootstrap-based t-tests. Negative correlation coefficients 
indicate better memory closer to the boundary.

Parameters of navigation. To assess whether differences in navigation behaviour 
might underlie the observed differences in positional memory, we analysed 
navigational performance in the replacement phase of each trial, in which 
participants navigated to the remembered position of a cued object. For each 
trial, we calculated the Euclidean distance between the start position and the 
response location, and subtracted it from the length of the path walked by the 
participant. This excess path length measures the directness of the paths taken, 
potentially reflecting the degree of certainty about the trajectory as increased 
uncertainty might lead to more turns and longer paths. We contrasted averaged 
excess path lengths between the two environments and the broad and narrow 
parts of the trapezoid (Extended Data Fig. 5a,b). Similarly, we contrasted average 
walking speeds during the replacement phase between the environments and trials 
targeting objects from the two trapezoid parts (Extended Data Fig. 5c,d).

We also assessed whether the distance from a trial’s start position was related to 
the accuracy of object-position memory in a consistent way across subjects.  
For each participant, we calculated the Spearman correlation coefficient between 
the distances from start to true object positions and positional memory as defined 
by the Euclidean distances between true and remembered object positions.  
The resulting coefficients were tested against 0 for all of the trials in the square and 
the trapezoid environments separately (Extended Data Fig. 5e) or for trials analysing 
objects in the narrow and broad parts of the trapezoid (Extended Data Fig. 5f).

Next, we assessed the rotations that participants made during the replacement 
phase of the trial. To achieve this, we centred the rotation of the body, as measured 
by the orientation of the motion platform’s ring construction, and the orientation 
of the participant’s head, as tracked by the HMD, on the direction from start to 
response position. We averaged orientation values for trials within the square and 
trapezoid environments, or the broad and narrow parts of the trapezoid, and tested 
for clustering around 0° using v-tests and differences in averaged orientation  
values between conditions using Watson–Williams tests71 (Extended Data Fig. 6,  
top). Furthermore, we quantified the circular variance of centred orientation 
values and contrasted it across conditions (Extended Data Fig. 6, bottom). None of 
these measures suggested that navigation behaviour alone had influenced the key 
conclusions of the paper.

Furthermore, we tested the sampling of directions separately for trials targeting 
objects in the narrow and broad parts of the trapezoid. For each of 36 angular bins 
with a width of 10°, we computed the proportion of time points during which 
participants’ bodies faced the direction of that bin. We averaged these proportions 
across participants for the polar histogram in Extended Data Fig. 7a. To test 
whether angular sampling was biased towards the long and short base of the 
trapezoid, we calculated the angular mean for each participant and used v-tests to 
test for a clustering around 180° and 0°, respectively. We next quantified average 
movement velocity for each direction bin (Extended Data Fig. 7b). We weighted 
directions by average velocity to compute a circular mean for each participant. 
Again, we tested using v-tests whether the resulting circular means clustered 
around 180° and 0° for trials in which target objects were located in the broad and 
narrow parts of the environment, respectively.
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Distance-estimation tasks. After completing the time-estimation task 
following the second object-position memory task in the second environment, 
the participants estimated distances between pairs of object positions in two 
modalities: on a computer screen and by walking the actual distances in VR.

Virtual reality. The participants were placed in the same circular virtual arena as 
the familiarization session. Each trial began with an arrow pointing to the middle 
of the arena, with the arrow appearing at a random location on the arena floor. 
After the participants positioned themselves on the base of the arrow, images of 
two objects were presented in front of them for 3 s (Fig. 3a). The participants were 
instructed to walk the distance that they remembered the objects to be apart on the 
basis of the object-position memory task while following the direction indicated by 
the arrow. When the participants terminated a trial by button press, a checkmark 
was presented to indicate the successful registration of the response and the next 
trial began. Owing to time constraints, this task was restricted to distances between 
objects within a triplet, resulting in 12 trials making up a block. The trial order 
within blocks was randomized with the constraint that trials with objects from the 
two environments alternated. The participants completed two blocks with a short 
break in between.

As only the distances within a triplet of positions were tested during this 
task, participants’ averaged estimates for the long and short distances were 
compared using a bootstrap-based paired t-test as an indicator of successful task 
performance (Extended Data Fig. 8a). To test whether distance estimates for the 
same distances differed between environments or the narrow and broad  
parts of the trapezoid, we took advantage of the fact that true distances were 
matched across position triplets and, therefore, across environment parts.  
The distance estimates for the two triplets within an environment were averaged 
and contrasted between the square and trapezoid using bootstrap-based 
t-tests (Fig. 3c). Similarly, response distances within a triplet were averaged 
and compared between the narrow and the broad parts of the trapezoid using 
bootstrap-based t-tests (Fig. 3e). As for the difference in positional memory, we 
created a surrogate distribution to compare the difference in distance estimation 
observed between the trapezoid halves and the square by shuffling across 
participants which half of the square was to serve as the minuend and subtrahend 
for the distance difference in each of 10,000 permutations. The distance difference 
observed in the trapezoid was more extreme than the 2.5th and 97.5th percentiles 
(two-tailed test) of this surrogate distribution (Extended Data Fig. 8e). The 
shape of the surrogate distribution did not differ statistically from normality 
(Kolmogorov–Smirnov test, D = 0.01, P = 0.200).

Computer monitor. Afterwards, the participants were instructed to estimate 
distances between object pairs on a desktop computer setup. Images of objects on 
a white background, as well as an adjustable horizontal bar with the labels ‘close 
together’ on the left and ‘far apart’ on the right were presented on a computer 
screen (Fig. 3c). Again, participants were instructed to estimate how far objects 
were apart during the object-location memory task. Here, they indicated their 
response by adjusting the horizontal bar using a computer mouse, after which a 
grey screen was shown for 500 ms. All of the possible combinations of distances 
were analysed, that is, including comparisons across triplets, yielding subjective 
distances between all pairs of object positions in an environment. Each of the 15 
combinations of object pairs per environment was probed twice, resulting in a total 
of 60 trials. The trial order was randomized with the constraint that each possible 
pair of objects was sampled before any object combination was sampled for the 
second time. Each object was shown once on the left and once on the right side of 
the screen in the two trials sampling a given object pair. This distance-estimation 
task, as well as the time-estimation task, was presented using the Psychophysics 
Toolbox73 for MATLAB (release 2016a). General performance in this task was 
assessed by calculating Spearman correlations between the estimated distances 
and the respective true distances (Extended Data Fig. 8b). Furthermore, the 
distance estimates were contrasted between environments and between the narrow 
and broad parts of the trapezoid as described above. The surrogate distribution 
obtained for comparison to the square did not differ statistically from normality 
(Kolmogorov–Smirnov test, D = 0.01, P = 0.167).

Reconstructing remembered positions. To reconstruct the positions of 
remembered objects in the trapezoid from distance estimates, MDS was applied 
to the distance estimates that were obtained in the desktop version of the task, as 
distances were estimated between all pairs of positions only in the desktop version 
of the task. The estimated distances were normalized to a range from 0 to 1 and 
averaged across the two repetitions of each object pair and subjected to MDS to 
recover coordinates that reflected this distance structure using metric stress as the 
cost function and a random initial configuration of points. Our approach assumed 
that two dimensions underlie the object location memory formed during the 
navigation task. To assess whether this assumption holds, we compared the model 
deviance of general linear models predicting the distances between true positions 
from the positions recovered from MDS for different numbers of dimensions. 
As expected, unexplained variance was substantially decreased when using two 
instead of one dimension, but no clear improvement resulted from a larger number 
of dimensions (Extended Data Fig. 9).

To match the coordinates that resulted from MDS to the original positions in 
the virtual environment, we used Procrustes analysis, which enabled translation, 
scaling, reflection and rotation (an application of the combination of MDS and 
Procrustes analysis to fMRI data was described previously74). The goodness of 
fit, the Procrustes distance, was quantified by the normalized sum of squared 
errors between the reconstructed and true coordinates, and was compared 
with Procrustes distances that resulted from the Procrustes analyses of the 
MDS coordinates and sets of coordinates in which the assignment of object 
identity to position was shuffled, yielding a surrogate distribution from all 720 
possible permutations. Specifically, we tested on the group level whether the fits 
between reconstructed coordinates and true coordinates were better than the fits 
constituting the 5th percentile (reflecting the threshold for statistical significance at 
α = 0.05) of each participant’s surrogate distribution (Fig. 4b,c). The reconstructed 
coordinates are shown as heat maps (Extended Data Fig. 9b) following the same 
procedure as described above.

To test whether the reconstructed positions indeed reflected participants’ 
memory in the object-position memory task, we recalculated the memory scores 
as described above but with the coordinates resulting from the Procrustes analysis 
instead of the true object positions as goal positions (Fig. 4d). To rule out that 
the effect was driven by objects for which positions were reconstructed to be 
remembered outside of the environment, we excluded all of the affected trials from 
the memory score calculation in an additional control analysis. To describe the 
overlap between positions reconstructed from distance estimates and performance 
in the object-position memory task, we calculated error vectors on the basis of 
the true object positions for both the reconstructed positions and the response 
positions from the object-position memory task. Specifically, we tested whether 
error vectors were of a similar length and had a similar orientation to demonstrate 
that positions were shifted by a similar distance and in a similar direction. We 
quantified the match between average error vectors of response and reconstructed 
positions by correlating their lengths using Pearson correlation (Fig. 4e). We 
further analysed the similarity in orientation of these error vectors by averaging 
the angular differences between vectors from the correct to the respective response 
and reconstructed positions for each participant and testing the resulting circular 
means for a clustering around 0° using a v-test (Fig. 4f).

Time-estimation task. To probe whether attentional demands differed between 
environments, we included a secondary task while participants performed the 
object-position memory task. If attentional demand differed across environments, 
we would expect to see differences in the performance of the secondary task. In the 
sky above each arena, a ring was presented that changed colour four times during 
the object-position memory task per environment. The ring remained in a  
given colour for an interval between 2 min and 6 min and the participants  
indicated colour changes by button presses and were instructed to remember the 
order of colours and the duration of the presentation of each colour. Although 
different colours were presented in the two environments, the intervals between 
colour changes were constant across environments, allowing for a comparison of 
temporal memory between square and trapezoid environments.

After completing the object-position memory task in an environment, the 
participants were placed in front of a computer screen to estimate the time 
between colour changes before continuing with the next part of the experiment 
(Fig. 1a). On a white screen, two pairs of consecutive colours were shown and 
the participants indicated the time interval that they remembered between the 
two colour changes in minutes and seconds, for example, how much time passed 
between the ring changing colour from blue to yellow and changing from yellow 
to green. The participants were cued to estimate the time between all six possible 
combinations of colour changes per environment. To ensure full understanding of 
this task, the participants estimated intervals between colour changes occurring at 
random times every 30 s to 120 s during the familiarization phase before the object-
position memory task. Overall performance in this task was quantified using 
Spearman correlations between the correct and estimated time intervals before 
specifically comparing average estimation errors, absolute estimation errors and 
the s.d. of estimation errors across environments (Extended Data Fig. 10).

Successor representation grid patterns. Following Stachenfeld et al.32, simulated 
grid cells were generated using the first 50 non-constant eigenvectors of the SR 
matrix under a uniform random-walk policy for a square (90 × 90cm) and a 
trapezoid (length 187 cm, parallel walls 90 cm and 20 cm, based on Krupic et al.10). 
Eigenvectors were thresholded at zero and scaled to a peak firing rate of 30 Hz. 
To assess the distortion of SR grid fields within the trapezoidal environment, we 
divided the square and trapezoid environments into halves across the longest axis 
and computed the spatial autocorrelation of the SR grid rate maps on each half. 
Grid similarity was then calculated by taking the Pearson correlation between 
the autocorrelations from each half of the environment (Fig. 1f). As the shortest 
dimension of the trapezoid was 20 spatial bins, a circular window of radius 40 
spatial bins was used to compare the autocorrelations ensuring the window for 
comparison never went off the autocorrelation map.

The decoding analysis sampled each spatial bin (1 cm2) of the environment 30 
times. On each occasion, for each of the 50 cells, spikes were randomly generated 
for a 100 ms time window according to a Poisson process with rate parameters 
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equal to the SR grids’ firing rates in that bin. The locations were then decoded 
using the maximum likelihood estimate of all 50 SR grid spike counts, and 
errors were calculated as the Euclidean distance between the true and decoded 
locations36,75 (Fig. 1g,h). Decoding errors were normalized so that errors in the 
square environment and broad part of the trapezoid had a mean of 1 for the 
comparison between environments and trapezoid halves, respectively.

To analyse differences in the spatial frequencies of the SR grids, we 
calculated the two-dimensional fast Fourier transform (FFT) for each rate map 
and reparametrized the FFT into polar coordinates. Power spectra were then 
considered solely as a function of radial frequency by averaging across the 
angular component of the FFT (Extended Data Fig. 3). Finally, we calculated the 
mean radial frequency of each SR grid and compared these across and within 
environments (Fig. 1i,j). Statistical significance of all SR grid pattern analyses was 
assessed using standard two-sample t-tests. The bias-corrected difference between 
means divided by the pooled s.d. served as the effect size and is reported with 
bootstrapped 95% confidence intervals70.

Likelihood analyses were performed separately for both the positional-memory 
and distance-estimation tasks. For each task, the proportional differences in 
participants’ responses from the square-trapezoid and within-trapezoid contrasts 
were compared to the distribution of proportional differences expected by the  
SR model. The same was performed for a null model using the same distribution 
of proportional differences as the SR, but with a shifted mean to predict no overall 
difference in the square-trapezoid and within-trapezoid contrasts. Likelihoods 
from the square–trapezoid and within-trapezoid contrasts were combined within 
tasks to give the likelihood of the human responses given each of the models for 
both the positional memory and distance-estimation tasks. The Bayes factor BF10 
was calculated as the ratio between the two model likelihoods. We report twice  
the natural logarithm of the Bayes factor (2ln(BF10)) as it has a similar scale to 
familiar likelihood ratio test statistics76. According to the conventions by Kass and 
Raftery76, 2ln(BF10) > 10 constitutes very strong evidence for the alternative over 
the null model.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Successor representation eigenvectors. A,B. The first 50 eigenvectors of the successor representation from a trapezoid and a 
square environment were used for analysis.
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Extended Data Fig. 2 | Position decoding based on the smallest rectangle enclosing the trapezoid. A. To demonstrate that worse position decoding 
in the trapezoid is due to the distorted eigenvector grid patterns and not the elongated shape of the environment we analyzed the eigenvectors of the 
smallest rectangle enclosing the trapezoid. We repeated the position decoding on the area of the trapezoid based on the SR grid patterns from the smallest 
rectangle. B. Position decoding errors were larger when the analysis was based on the distorted grid patterns of the trapezoid rather than the regular grid 
patterns generated on the smallest rectangle enclosing the trapezoid (two-sample t-test: t(58)=64.52, p<0.001, d=16.44, 95%-CI: 14.29; 20.46).  
C. The 50 eigenvector grid patterns used in this analysis.
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Extended Data Fig. 3 | Spatial frequencies of eigenvector grid patterns. A,B. Radial power spectra based on two-dimensional FFT averaged across the 50 
SR grid patterns. Average spatial frequencies were higher in the square than the trapezoid (A) and higher in the narrow compared to the broad part of the 
trapezoid (B). Dotted lines indicate mean radial frequencies.
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Extended Data Fig. 4 | Positional memory. A. Distribution of average memory scores across participants. Grey area indicates normal kernel density 
estimate, solid white line shows median and dashed white lines show upper and lower quartile of distribution. Black circles show memory scores of 
individual participants. B. Positional memory error difference between the two parts of the trapezoid. Higher values indicate larger errors in the narrow  
part of the trapezoid. Data points more than 1.5 times the interquartile range above or below the upper or lower quartile were excluded as outliers  
(grey dots) for the main analysis, but comparable results are obtained without outlier exclusion (t(36)=1.50, p=0.020, d=0.25, 95%-CI: -0.06; 0.50). 
Boxplot represents median as well as upper and lower quartile of distribution, whiskers show most extreme value within 1.5 times the interquartile range 
from the upper and lower quartile respectively. C. The positional memory error difference observed between the trapezoid parts (dashed line represents 
mean difference across participants) was significantly lower than the critical value (5th percentile, dotted line) of a shuffle distribution (blue) obtained 
from computing error difference between the square halves across 10000 iterations. D. Heatmaps showing response locations for all trials across all 
participants for objects in the broad (top) and narrow (bottom) part of the trapezoid. Dotted lines show correct location in x- and y-dimension with their 
intersection representing the true position. e. Relationships between the distance to the closest boundary and the memory score were quantified using 
Pearson correlation. Correlation coefficients were consistently negative in the square, indicating better memory for positions closer to the wall.  
No statistically significant difference from zero was observed for correlation coefficients in the trapezoid and correlations differed between environments.  
* p<0.05 *** p<0.001.
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Extended Data Fig. 5 | Navigation performance does not differ between environments. A,B. There were no statistically significant differences in the 
excess path lengths of the trajectories from start to response positions between (A) square and trapezoid or (B) the two parts of the trapezoid.  
C,D. There were no statistically significant differences in walking speed between (C) square and trapezoid or (D) the two parts of the trapezoid. e,F. There 
was no statistically significant difference from zero in Spearman correlation coefficients between the Euclidean distance from the start positions to the 
correct object positions and replacement errors (e) in the square or trapezoid or (F) for objects located in the broad and narrow part of the trapezoid 
separately. Bars show mean±SEM and grey circles indicate individual subject data with lines connecting data points from the same participant.
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Extended Data Fig. 6 | Head and body orientation during navigation. A,B. Circular means in degrees of (A) body and (B) head rotations centered on each 
trial’s direction from start to response position. Means were significantly clustered around 0° for both square and trapezoid and there was no statistically 
significant difference between them. C,D. Circular means of (C) body and (D) head rotations centered on each trial’s direction from start to response 
position. Means were significantly clustered around 0° for trials with target object positions in the broad and narrow part of the trapezoid, respectively, 
and there was no statistically significant difference between them. e. There was no statistically significant difference in the circular variance of body 
rotations over trials averaged for each participant between square and trapezoid. F. The circular variance of head rotations over trials averaged for each 
participant was larger in the trapezoid than in the square. G. There was no statistically significant difference in the circular variance of body rotations over 
trials averaged for each participant between navigation periods for target objects located in the broad or narrow portion of the trapezoid. H. The circular 
variance of head rotations over trials averaged for each participant was smaller when cued object position were in the broad compared to the narrow part 
of the trapezoid. *** p<0.001.
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Extended Data Fig. 7 | Angular and velocity sampling. A. Average angular sampling for 10° bins during navigation from a trial’s start position to the 
remembered object location. Radial axis shows proportion of time points facing in a directional bin. For trial’s targeting objects in the broad part of the 
trapezoid, participants mostly faced towards the long base of the trapezoid (180°), whereas they more frequently faced towards the short base (0°) when 
targeting objects in the narrow part of the environment. B. Average movement speed (radial axis vm/s) for 10° directional bins for trials targeting objects 
in the broad and narrow part of the trapezoid. Navigation speed was higher along the long axis of the environment as indicated by higher movement 
speeds towards 0° and 180° for trials where participants targeted objects in the narrow and broad part of the trapezoid, respectively. In A and B, colored 
lines and shaded area show mean and SEM, respectively.
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Extended Data Fig. 8 | Distance estimates. A. Long distances (i.e. the base of the isosceles triangle formed by a triplet of positions) were estimated to be 
longer than the shorter distances (i.e. the legs of the isosceles triangle). Only within-triplet distances were estimated in VR. Bars show mean±SEM  
and grey circles indicate individual subject data with lines connecting data points from the same participant. B. Grey area indicates distribution of 
Spearman correlation (mean±SD r=0.69±0.19) coefficients between correct and estimated distances based on normal kernel density estimate. Solid 
white line shows median and dashed white lines show upper and lower quartile. Black circles show correlation coefficients of individual participants.  
C. The difference between distance estimates for identical distances in the square and the trapezoid was highly correlated between the computer screen 
and the VR version of the task. D. Significant correlation of distance difference between the two parts of the trapezoid obtained from distance estimates on 
the computer screen and in VR. Circles in C and D denote individual participant data; solid line shows least squares line; dashed lines and shaded region 
highlight bootstrapped confidence intervals. e,F. The distance difference observed between the trapezoid parts (dashed line) was more extreme than the 
critical values (dotted line) of the shuffle distribution (blue) obtained from computing the distance difference between the square halves across 10000 
iterations for the distance estimates in VR (e) and on the PC (F).
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Extended Data Fig. 9 | Two dimensions underlie distance estimates. A. Model deviance of GLMs using pairwise Euclidean distances of coordinates 
obtained from MDS to predict estimated distances for different numbers of dimensions (solid line shows mean model deviance across participants, 
shaded area indicates SEM). In line with our a priori assumption that two dimensions underlie the distance estimates, model deviance sharply drops 
when using two rather than one dimension and there is no substantial benefit from including three or more dimensions. B. Heatmaps showing positions 
reconstructed using multi-dimensional scaling and Procrustes transform for objects in the broad (top) and narrow (bottom) part of the trapezoid. Dotted 
lines show correct position in x- and y-dimension with their intersection representing the true position.
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Extended Data Fig. 10 | No statistically significant differences in time estimates between environments. A. Grey area indicates distribution of Spearman 
correlation coefficients (mean±SD r=0.77±0.23) between true and estimated times based on normal kernel density estimate. Solid white line shows 
median and dashed white lines show upper and lower quartile. Black circles show correlation coefficients of individual participants. B-D. There were no 
statistically significant differences between the two environments for (B) averaged time estimation errors, (C) averaged absolute time estimation errors or 
(D) the variability of time estimates as measured by their standard deviation. Bars show mean±SEM and grey circles indicate individual subject data with 
lines connecting data points from the same participant.
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