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ABSTRACT
Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic

increase in the size and extent of neural recordings, yet their interpretation still depends on

time-intensive manual operations. Decoding provides a means to infer the information content

of such recordings but typically requires highly processed data and prior knowledge of variables.

Here, we developed DeepInsight - a deep-learning-framework able to decode sensory and be-

havioural variables directly from wide-band neural data. The network requires little user input

and generalizes across stimuli, behaviours, brain regions, and recording techniques. Critically,

once trained, it can be analysed to determine elements of the neural code that are informative

about a given variable. We validated this approach using data from rodent auditory cortex and

hippocampus, identifying a novel representation of head direction encoded by CA1 interneurons.

Thus, we present a robust, user-friendly tool for characterising and decoding neural recordings in

an automated way. Code is available at https://github.com/CYHSM/DeepInsight.

INTRODUCTION

A central aim of neuroscience is deciphering the neural code, understanding the neural representa-

tion of sensory features and behaviours, as well as the computations that link them. The task is

complex, and although there have been notable successes - such as the identification of orientation

selectivity in V1 (Hubel and Wiesel, 1959) and the representation of self-location provided by
hippocampal place cells (O’Keefe and Dostrovsky, 1971) - progress has been slow. Neural activity
is high dimensional and often sparse, while the available datasets are typically incomplete, being

both temporally and spatially limited. This problem is compounded by the fact that the code is

multiplexed and functionally distributed (Walker et al., 2011). As such, activity in a single region
may simultaneously represent multiple variables, to differing extents, across different elements

of the neural population. Taking the entorhinal cortex for example, a typical electrophysiological

recording might contain spike trains from distinct cells predominantly encoding head direction,

self-location, and movement speed via their firing rates (Sargolini et al., 2006; Kropff et al., 2015;
Hafting et al., 2005), while other neurons have more complex composite representations (Hard-
castle et al., 2017). At the same time, information about speed and location can also be identified
from the local field potential (LFP) (McFarland et al., 1975) and the relative timing of action poten-
tials (O’Keefe and Recce, 1993). Fundamentally, although behavioural states and sensory stimuli
can generally be considered to be low dimensional, finding the mapping between noisy neural
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representations and these less complex phenomena is far from trivial.

Historically, the approach for identifying the correspondence between neural data and external

observable states – stimuli or behaviour – has been one of raw discovery. An experimenter,

guided by existing knowledge, must recognise the fact that activity covaries with some other factor.

Necessarily this is an incremental process, favouring identification of the simplest and most robust

representations, such as the sparse firing fields of place cells (Muller et al., 1987). Recent advances
in machine learning suggest an alternative strategy. Artificial neural networks (ANNs) trained

using error backpropagation regularly exceed human-level performance on tasks in which high

dimensional data is mapped to lower dimensional labels (Krizhevsky et al., 2012; Mnih et al.,
2015). Indeed, these tools have successfully been applied to processed neural data - accurately
decoding behavioural variables from observed neural firing rates (Glaser et al., 2017; Tampuu
et al., 2018). However, the true advantage of ANNs is not their impressive accuracy but rather the
fact that they make few assumptions about the structure of the input data and, once trained, can

be analysed to determine which elements of the input are most informative. Viewed in this way

ANNs potentially provide a means to accelerate the discovery of novel neural representations.

To test this proposal, we developed a convolutional neural network (LeCun et al., 2015) able
to take minimally processed, wide-band neural data as input and output predicted continuous

regression variables. In the first instance, we trained the model with unfiltered and clustered

electrophysiological recordings made from the CA1 pyramidal cell layer in freely foraging rodents. As

expected, the network accurately decoded the animals’ location, speed, and head direction explicitly

without spike sorting or additional user input. Analysis of the trained network showed that it had

‘discovered’ place cells (O’Keefe and Dostrovsky, 1971; O’keefe and Nadel, 1978) - frequency
bands associated with pyramidal waveforms being highly informative about self-location. Equally,

it successfully recognized that theta-band oscillations in the LFP were informative about running

speed (McFarland et al., 1975; Jeewajee et al., 2008). Unexpectedly, the network also identified a
population of CA1 interneurons that encoded information about head direction. We corroborated

this observation using conventional tools, confirming that the firing rate of these neurons was

modulated by facing-direction - a previously unreported relationship. Subsequently, to demonstrate

the generality of this approach, we applied the same architecture to electrophysiological data from

auditory cortex as well as two-photon calcium imaging data (Stosiek et al., 2003) acquired while
mice explored a virtual environment.

Our model differs markedly from conventional decoding methods which typically use Bayesian

estimators (Zhang et al., 1998) in conjunction with highly processed neural data. In the case of
extracellular recordings, this usually implies that time-series are filtered and processed to detect

action potentials which are then assigned to specific neurons. It is on this basis that expected

neural activity as a function of the decoded variables are calculated. Necessarily this approach

potentially introduces biases in spike sorting (Wood et al., 2004) – favouring waveforms that are
easily discriminated, being dependent on the algorithm used (Pachitariu et al., 2016; Chung et al.,
2017; Lee et al., 2017), and generally changing with the operator’s subjective preferences (Harris
et al., 2000). More importantly, accurate calculation of prior expectations regarding the way in
which the data varies with the decoded variable – an essential component of Bayesian decoding –

requires considerable knowledge about the neural signal being studied. In contrast, the flexible,

general-purpose approach we describe here requires few assumptions and – once trained - can be

interrogated to inform the discovery of novel neural representations.
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RESULTS

Accurate decoding of self-location from CA1 recordings
In the first instance we sought to evaluate our network-based decoding approach on well charac-

terised neural data with a clear behavioural correlate. To this end we used as input extracellular

electrophysiological signals recorded from hippocampal region CA1 in five freely moving rats - place

cells from this area being noted for their spatially constrained firing fields that convey considerable

information about an animals self-location (O’Keefe and Dostrovsky, 1971; Muller et al., 1987).
Animals were bilaterally implanted with 32 tetrodes and, after recovery and screening, 128 channel

wide-band (0Hz to 15000 Hz sampled at 30kHz) recordings were made while the rats foraged in a

1.25 x 1.75m arena for approximately 40 minutes (see methods). Raw electrophysiological data

were decomposed using Morlet wavelets to generate a three-dimensional representation depicting

time, channels, and frequencies from 2Hz to 15000Hz (Figure 1A) (Torrence and Compo, 1998).
Using the wavelet coefficients as inputs, the model was trained in a supervised-fashion using error

backpropagation with the X and Y coordinates of the animal as regression targets. In particular, the

model makes use of 2D convolutions, sharing weights across channels and time (Figure 1B, see also

Methods and Table S1).

The model accurately decoded position from the unprocessed neural data in all rats, providing a

continuous estimate of location with an average error less than 10% of the environment’s length.

This demonstrates that, as expected, the network was able to identify informative signals in the

raw neural data (Mean error 17.31cm ± 4.46cm; Median error 11.40cm ± 3.82cm; Chance error

65.03cm ± 6.91cm; Figure 1C,D). To provide a familiar benchmark, we applied a standard Bayesian

decoder (Zhang et al., 1998; Ólafsdóttir et al., 2015) to the spiking data from the same datasets
(see methods). To this end, action potentials were identified, clustered, manually curated, and spike

time vectors were used to decode location - data contained in the local field potential (LFP) was

discarded. Notably our CNN approach was consistently more accurate than the Bayesian decoder,

exceeding its performance in all animals (Bayesian mean error 23.38cm ± 4.35cm; network error

17.31cm ± 4.46 cm; Wilcoxon signed-rank test: T=18, p=0.0001) also outperforming a linear support

vector machine trained on the full data set (53.6cm ± 14.77cm; Figure 1E). Indeed, the relative

advantage over the Bayesian decoder increased further when the number of channels used for

decoding was downsampled to simulate smaller recordings (linear regression Wald-test, s=-0.65,

p=1.83e-10; Figure 1G). Notably, the model achieved a similar decoding performance with twenty

tetrodes (80 channels, 23.45cm ± 3.15cm) as the Bayesian decoder reached with the full data set

(128 channels, 23.25cm ± 2.79cm, Figure 1G). The high accuracy and efficiency of the model suggest

that our model utilizes additional information contained in the LFP as well as from sub-threshold

spikes and those that were not successfully clustered. Note that neither method has access to the

animals’ position at the previous timestep as both are effectively feed-forward methods, though the

Bayesian decoder incorporates prior information about historic dwell locations and the network

implicitly has access to this information as well.

To better understand which elements of the raw neural data the network used, we retrained our

model using datasets limited to just the LFP (<250Hz) and just the spiking data (>250Hz). In both

cases, the network accurately decoded location (spikes-only (CNN-Spikes) mean error 17.23cm ±

4.69cm; LFP-only (CNN-LFP) mean error, error 24.24cm ± 6.00cm; Figure 1E), indicating that this

framework is able to extract information from varied electrophysiological sources. Consistent

with the supposed higher information content of action potentials, the spikes-only network was

considerably more accurate than the LFP-only network (Wilcoxon signed-rank test: T=0, p=1.22e-
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Figure 1: Accurate decoding of self-location from unprocessed hippocampal recordings. A) Top, a typical ’raw’ extracellular
recording from a single CA1 electrode. Bottom, wavelet decomposition of the same data, power shown for frequency bands from 2Hz

to 15kHz (bottom to top row). B) At each timestep wavelet coefficients (64 time points, 26 frequency bands, 128 channels) were fed

to a deep network consisting of 2D convolutional layers with shared weights, followed by a fully-connected layer with a regression

head to decode self-location; schematic of architecture shown. C) Example trajectory from R2478, true position (black) and decoded

position (blue) shown for 3s of data. Full test-set shown in Video 1. D) Distribution of decoding errors from trial shown in (C), mean
error (14.2cm ± 12.9cm, black), chance decoding of self-location from shuffled data (62.2cm ± 9.09cm, red). E) Across all five rats,

the network (CNN) was more accurate than a machine learning baseline (SVM) and a Bayesian decoder (Bayesian) trained on action

potentials. This was also true when the network was limited to high frequency components (>250Hz, CNN-Spikes). When only local

frequencies were used (<250Hz, CNN-LFP), network performance dropped to the level of the Bayesian decoder (distributions compiled

from five cross-validations). F) Decoding accuracy for individual animals, the network outperformed the Bayesian decoder in all cases.

G) The advantage of the network over the Bayesian decoder increased when the available data was reduced by downsampling the

number of channels (data from R2478). Inset shows the difference between the two methods.
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05), although the LFP-only network was still comparable with the spike-based Bayesian decoder

(Bayesian 23.38cm ± 4.35cm; LFP 24.24cm ± 6.00cm; Wilcoxon signed-rank test: T=136, p=0.475).

Simultaneous decoding of multiple factors
The hippocampal representation of self-location is arguably one of the most readily identifiable

neural codes - at any instance a small number of sparsely active neurons are highly informative. To

provide a more stringent test of the network’s ability to detect and decode behavioural variables

from unprocessed neural signals, we retrained with the same data but simultaneously decoded

position, speed, and head-direction within a single model. CA1 recordings are known to incorporate

information about these additional factors but their representation is less pronounced than that

for self-location. Thus, the spatial activity of place cells is known to be weakly modulated by

head direction (Jercog et al., 2019; Yoganarasimha et al., 2006), while place cell firing rates and
both the frequency and amplitude of theta, a 7-10Hz LFP oscillation, are modulated by running

speed (McFarland et al., 1975; Jeewajee et al., 2008). In this more complex scenario decoding was
accomplished by replicating the final fully connected layer of the network, one layer for each variable,

with the provision of appropriate loss functions - cyclical mean absolute error for head direction

and mean absolute error for speed (see Methods). All three variables were decoded simultaneously

and accurately (Position, 17.78cm ± 4.96cm; Head Direction, 0.80rad ± 0.18rad; Speed 4.94cm/s

± 1.00cm/s; Figure 2A & Video 1), with no meaningful decrement in performance relative to the
simpler network decoding only position (position-only model 17.31cm ± 4.46; combined model

17.78cm ± 4.96cm; Wilcoxon signed-rank test: T=116, p=0.2108). Indeed, comparison of the R2-

score metric from the fully trained network - a measure which represents the portion of variance

explained and is independent of the loss function - indicated that mean decoding performance was

above 0.6 for all three behaviours (R2-score Position 0.86 ± 0.08, Head Direction 0.60 ± 0.12, Speed

0.72 ± 0.14, Chance R2-score Position -0.14 ± 0.13, Head Direction 0.04 ± 0.11, Speed -0.16 ± 0.22)

(Figure 2B). Thus, the network was able to effectively access multiplexed information embedded in

minimally processed neural data.

Interrogation of electrophysiological recordings
Although the network supports accurate decoding of self-location from electrophysiological data,

this was not our main aim. Indeed, our primary goal for this framework was to provide a flexible

tool capable of discovering and characterising sensory and behavioural variables represented in

neural data - providing insight about the form and content of encoded information. To this end, in

the fully trained network, we used a shuffling procedure to estimate the influence that each element

of the 3D input (frequencies x channel x time) had on the accuracy of the decoded variables (see

Methods). Since this approach does not require retraining it provides a rapid and computationally

efficient means of assessing the contribution made by different frequency bands, electrodes, and

time points.

Turning first to position decoding, we saw that the adjacent 469Hz and 663Hz frequency bands were

by far the most influential - together accounting for more than 42% of the information about self-

location derived from the electrophysiological data (Figure 3A). Since these recordings were made

from CA1, we hypothesized that these frequencies corresponded to place cell action potentials.

To confirm this hypothesis - and demonstrate that it was possible to objectively use this network-

based approach to identify the neural basis of decoded signals - we applied the following approach

(see Methods): First, using data from R2478, we isolated the waveforms of place cells (n=123)

and interneurons (n=51) which were identified using a conventional approach (Pachitariu et al.,

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/871848doi: bioRxiv preprint 

https://youtu.be/EP0XM8aWTDA
https://doi.org/10.1101/871848
http://creativecommons.org/licenses/by-nc-nd/4.0/


DEEPINSIGHT: A GENERAL FRAMEWORK FOR INTERPRETING WIDE-BAND NEURAL ACTIVITY 6

Figure 2: Simultaneous decoding
of multiple variables from hip-
pocampal data.
A) Position, head direction, and

running speed were accurately de-

coded in concert by a single net-

work. Data from all five animals,

each point indicates an error for

a single sample. The red dashed

line indicates the chance level ob-

tained by shuffling the input relative

to the output while fully retraining

the model.

B) R2-scores, a loss-invariant mea-

sure of model performance - rang-

ing from 1 (perfect decoding) to neg-

ative infinity - allowing performance

to be compared between dissimilar

variables. Data as in (A), each point

corresponds to one of five cross-

validations within each of five rats

2016). Second, for these two groups, we calculated the relative representation of the 26 frequency
bands in their waveforms. We found that the highly informative 469Hz and 663Hz bands were the

dominant components of place cell action potentials and that in general the power spectra of these

spikes strongly resembled the frequency influence plot for position decoding (Spearman rank-order

correlation ρ=0.84, p=7.63e-08; Figure 3B). In contrast, interneurons - which typically have a shorter

after-hyperpolarisation than pyramidal cells (English et al., 2017) - were characterised by higher
frequency components (Figure 3B, Mann-Whitney rank test interneuron vs. pyramidal, U=1009.5,

p=2.47e-13), with the highest power at 5304Hz and 3750Hz, bands that were considerably less

informative about self-location (Figure 3A).

Since the frequencies associated with pyramidal waveforms were the most informative, this in-

dicated that the network had correctly identified place cells as the primary source of spatial

information in these recordings. To corroborate this, we used the same data and for each channel

eliminated power in the 469Hz and 663Hz frequency bands at time points corresponding to either

place cell or interneuron action potentials. As expected, position decoding was most strongly

affected by removal of the place cell time points (Wilcoxon signed-rank test: T=1497, p=2.86e-08;

Figure 3C). Using the same shuffling method we also analysed how informative each channel was

about self-location (Figure S3A). In particular, we found that the number of place cells identified

on a tetrode from the spike sorted data was highly correlated with the tetrode’s spatial influence

(Spearman rank-order correlation ρ=0.71, p=5.11e-06) and that the overall distribution of both

number of place cells and spatial influence followed a log-normal distribution (Shapiro-Wilk test

on log-transformed data, number of place cells, W=0.79, p=3.59e-05; tetrode influence W=0.59,

p=3.04e-08; Figure S3B). In sum, this analysis correctly identified that the firing rates of both place

cells and interneurons are informative about an animal’s location, place cells more so than in-

terneurons (Wilent and Nitz, 2007). The analysis also highlighted the spatial activity of place cells,
pointing to the stable place fields as a key source of spatial information.
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Figure 3: Analysis of trained network identifies informative elements of the neural code.
(A) A shuffling procedure was used to determine the relative influence of different frequency bands in the network input. Left, the

469Hz and 663Hz components - corresponding to pyramidal cell action potentials - were highly informative about animals’ positions.

Middle, both pyramidal cells and interneurons (5304Hz) carried information about head direction. Right, several frequency bands were

informative about running speed, including those associated with the LFP (10.4Hz) and action potentials. Data from all animals. (B)

Wavelet coefficients of place cell (top) and interneuron (bottom) waveforms are distinct and correspond to frequencies identified in A.

Inset, average waveforms. Data from R2478. (C) Frequency bands associated with place cells (469 & 663Hz) were more informative

about position than those associated with interneurons (5304 Hz) - their elimination produced a larger decrement in decoding

performance (p<0.001). (D) A subset of CA1 interneurons stably encodes head direction (Pearson correlation between 1st & 2nd half

trial). Green indicates cells with significant (p<0.01) Kullback-Leibler divergence vs. uniform circle and significant stability between trial

halves (n=14/51). Inset, example polar ratemaps. Data from R2478.

CA1 interneurons are modulated by head direction
Next, having validated our approach for spatial decoding, we examined the basis upon which the

network was able to decode head direction. Although place cells primarily provide an allocentric

spatial code, their infield firing rate is known to be modulated by heading direction (Muller et al.,
1994; Rubin et al., 2014). Consistent with the presence of this directional code, we again saw that
the most influential frequencies for head direction decoding were those associated with pyramidal

cells (469Hz and 663Hz; Figure 3A). However, the distribution also incorporated a secondary peak

corresponding to the frequencies typical for interneuron waveforms (Spearman rank-order correla-

tion ρ=0.76, p=5.71e-06). Presubicular interneurons have been shown to be modulated by both

head direction and angular velocity (Preston-Ferrer et al., 2016) but to the best of our knowledge
no similar responses have been noted in CA1. To establish if interneurons conveyed information

about head direction we again used an ’elimination’ analysis on data from R2478 - the two frequency

bands most strongly associated with interneurons (3750Hz and 5304Hz) were shuffled within each

channel’s signal at time points when interneuron spikes were present. Consistent with the influence

plots, we found that selectively eliminating interneurons degraded the accuracy with which head
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direction was decoded (relative influence: 0.089 ± 0.043, t-test t=4.16, p=0.014). As a final step,

to verify this novel observation we reverted to a standard approach. Specifically, we calculated

the directional ratemap for each interneuron using only periods when the animal was in motion

(>10cm/s), determined the Kullback-Leibler divergence vs. a uniform circle (Doeller et al., 2010),
and applied a shuffling procedure to determine significance - as a whole the population exhibited

reliable but weak modulation of interneuronal firing rate by head direction (Kullback-Leibler Di-

vergence (n=51): 0.0067 ± 0.009) with 52.9% (27/51) of cells being individually significant (p<0.01).

Behaviours that are inhomogeneously distributed or confounded can result in spurious neural

correlates (Muller et al., 1994). To control for this possibility we repeated the analysis using only
data from the centre of the environment (>25cm from the long sides of the enclosure and >20cm

from the short sides). Additionally, to verify stability, we controlled that ratemaps generated from

the first and second half of the trial were correlated (Pearson correlation, p<0.01). Under this more

rigorous analysis, we confirmed that a sub-population (27.5%, 14/51) of hippocampal interneurons

were modulated by head direction, a previously unrecognised spatial correlate (Figure 3D).

Multiple electrophysiological features contribute to the decoding of speed
The frequency influence plots for running speed also showed several local peaks (Figure 3A), that

in all cases corresponded to established neural correlates. In rodents, theta frequency and power

are well known to co-vary almost linearly with running speed (McFarland et al., 1975; Jeewajee
et al., 2008), accordingly analysis of the network identified the 10.4Hz frequency band as the most
influential. Similarly, the firing rate of place cells increases with speed, an effect captured by the

peak at 663Hz. Interestingly a clear peak is also evident at 2652Hz, indicating that interneuron firing

rates are also informative - originating either from CA1 speed cells (Góis and Tort, 2018) or from
theta-locked interneurons (Huh et al., 2016). Finally, a 4th peak was evident at 3.66Hz and 5.17Hz,
a range that corresponds to type 2 (’atropine sensitive’) theta which is present during immobility

(Kramis et al., 1975; Sainsbury et al., 1987). To corroborate this conclusion, we calculated the
correlation between power in each frequency band and running speed (Supplementary Figure S2),

confirming that the latter band showed the expected negative correlation - higher power at low

speeds - while the other three peaks were positively correlated.

DeepInsight generalizes across brain regions and recording techniques
As a final step, we sought to determine how well our approach generalised to other recording

techniques and brain areas. Addressing the latter point first, we trained the network using electro-

physiological recordings (64 channels) from the primary auditory cortex of a freely-moving mouse

while pure tone auditory stimuli (4 to 64kHz, duration 200 ms) were played from a speaker (Figure

4A). As above, the raw electrophysiological data was transformed to the frequency domain using

Morlet wavelets and this wide-band frequency representation was used as input to the same model.

The auditory stimuli - training target - was modelled as a continuous variable with ’-1’ indicating

no tone present and the log-transformed frequency of the sound at all other time points. As ex-

pected, this model architecture was also able to accurately decode tone stimuli from auditory cortex

(R2-scores of 0.734 ± 0.080, chance model: -0.432 ± 0.682, Figure 4B,C). Informative frequencies

were concentrated around 663Hz and 165Hz, indicating that information content about tone stimuli

comes mostly from pyramidal cell activity.

Having shown that the model generalises across different brain areas we wanted to further investi-

gate if it generalizes across different recording techniques. Therefore, in the third set of experiments

we acquired two-photon calcium fluorescence data from mouse CA1 while the head-fixed animal
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Figure 4: Model generalizes across recording techniques and brain regions
(A) Overview of auditory recording. We recorded electrophysiological signals while the mouse is freely moving inside a small enclosure

and is presented with pure tone stimuli ranging from 4kHz to 64kHz. (B) R2-score for decoding of frequency tone from auditory

cortex (0.73 ± 0.08), chance level is indicated by the red line. (C) An example section for decoding of auditory tone frequencies from

auditory electrophysiological recordings, real tone colored in black, decoded tone in green, the line between real and decoded indicates

magnitude of error. (D) Influence plots for decoding of auditory tone stimuli, same method as used for CA1 recordings. (E) Calcium

recordings from rat running on a linear track in VR. We record from 685 cells and use Suite2p to preprocess the raw images and extract

calcium traces which we feed through the model to decode linear position. (F) R2-score for decoding of linear position from two-photon

CA1 recordings (0.90 ± 0.03), chance level is indicated by the red line. (G) Example trajectory through the virtual linear track (linearized

to [−π, π] with real position (black) and decoded position (orange)). (H) Influence plots for decoding of position from two-photon calcium
imaging. Note that the range of frequencies is between 0Hz and 15Hz as the sampling rate of the calcium traces is 30Hz.
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explored a 230cm virtual track. Raw data was preprocessed to generate denoised activity traces for

putative cells (n=685 regions of interest), these were then decomposed to a frequency representa-

tion using the same wavelet approach as before - only frequency bands between 0Hz and 15Hz

being used because of the lower data rate (30Hz) (see methods, Figure 5E). Wavelet coefficients were

provided to the network as input with most of the architecture kept the same, only the number of

down-sampling steps were increased to account for the large number of ROIs. The network was able

to accurately decode the animal’s position on the track (mean error: 15.87 ± 16.33 cm, R2-scores

of 0.90 ± 0.03 vs. chance model -0.05 ± 0.127, Figure 4F,G). Using the same shuffling technique as

before, we generated influence plots indicating the relative information provided by frequencies

(Fig 4H) and ROIs (Fig 4E). In the frequency domain, the most informative bands were 0.33Hz and

0.46Hz, mirroring the 1s to 2s decay time of GCaMP6s (Chen et al., 2013). In contrast, informative
ROIs were distributed across the field of view with no discernible pattern (Figure 4E) - a result that

is expected given the absence of topographic representations in hippocampus (Dombeck et al.,
2010).

DISCUSSION

The neural code provides a complex, non-linear representation of stimuli, behaviours, and cognitive

states. Reading this code is one of the primary goals of neuroscience - promising to provide insights

into the computations performed by neural circuits. However, decoding is a non-trivial problem,

requiring strong prior knowledge about the variables encoded and, crucially, the form in which they

are represented. Not only is this information often incomplete or absent but a full characterisation

of the neural code is precisely the question we seek to solve. Addressing these limitations, we

investigated the potential of a deep-learning framework to decode behaviours and stimuli from

wide-band, minimally processed neural activity. To this end, we designed a model architecture using

simple 2D convolutions with shared weights, omitting recurrent layers. These intentional design

choices resulted in a fast, data efficient architecture that could be easily interpreted to discover

which elements of the neural code provided information about specific variables - a decrease in

network performance was accepted as a trade-off.

In the first instance we validated our approach using the well characterised spatial representations

of rodent CA1 place cells. Decoding performance amply exceeded that of a simple Bayesian

decoder but importantly the network correctly identified pyramidal cell action potentials as the

most informative spatial signal. In a further set of experiments with the same data, we showed that

the network was able to identify multiple neural representations of head direction and running

speed, including several that were only recently reported and one - interneuron encoding of head

direction - that was, as far as we are aware, previously unreported. Finally, we demonstrated the

flexibility of this approach, applying the same core network, with adjustments made to the input

and output layers, to two-photon calcium data and extracellular recordings from auditory cortex.

In sum, we believe deep-learning based frameworks such as this, constitute a valuable tool for

neuroscientists - being able to provide a general overview as to whether a variable is encoded

in a data set but also providing detailed information about the nature of that encoding. That

is not to say that this approach is a complete substitute for conventional analyses - it merely

constrains the search space for variables that might be present and their plausible format. Indeed,

we imagine this network might be best used as a first pass analysis, followed by conventional

approaches to determine explicitly if a variable is present - much as we did for the interneuron

representation of head direction. We note that in principal this network can accept neural data
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from most experimental settings, including fMRI and MEG. However, its greatest utility is likely to be

evident when applied to wide-band neural data.

METHODS

Tetrode recordings from CA1
Fivemale Lister Hooded rats were used for this study. All procedures were approved by the UK Home

Office, subject to the restrictions and provisions contained in the Animals Scientific Procedures Act

of 1986. All rats (333-386 g/13-17 weeks old at implantation) were implanted with two single-screw

microdrives (Axona Ltd.) targeted to the right and left CA1 (ML: 2.5 mm, AP: 3.8 mm posterior to

bregma, DV: 1.6 mm from dura). Each microdrive was assembled with two 32 channel Omnetics

connectors (A79026-001) and 16 eight tetrodes of twisted wires (either 17 µm H HL coated platinum
iridium, 90% and 10% respectively, or 12.7 µm HM-L coated Stablohm 650; California Fine Wire),
platinum plated to reduce impedance to below 150 kΩ at 1 kHz (NanoZ). After surgery, rats were

housed individually on a 12 hr light/dark cycle and after one week of recovery rats were maintained

at 90% of free-feeding weight with ad libitum access to water.

Screening was performed from one week after surgery. Electrophysiological data was acquired

using Open Ephys recording system (Siegle et al., 2017) and a 64-channel amplifier board per
drive (Intan RHD2164). Positional tracking performed using a Raspberry Pi with Camera Module V2

(synchronised to Open Ephys system) and custom software, that localised two different brightness

infra-red LEDs attached to amplifier boards on camera images acquired at 30 Hz. During successive

recording sessions in a separate screening environment 1.4 x 1.4 m the tetrodes were gradually

advanced in 62.5 µm steps until place cells were identified. During the screening session, the animals
were often being trained in a spatial navigation task for projects outside the scope of this study.

The experiments were run during the animals’ dark period of the L/D cycle. The recording sessions

used in this study were around 40 min long, depending on the spatial sampling of the animal,

in a rectangular environment of 1.75 x 1.25 m, on the second, third or fourth exposure, varying

between animals. The environment floor was black vinyl flooring, it was constructed of 60 cm

high boundaries (MDF) colored matt black, surrounded by black curtains on the sides and above.

There was one large cue card raised above the boundary and two smaller cue cards distributed on

the side of the boundary. Foraging was encouraged with 20 mg chocolate-flavoured pellets (LBS

Biotechnology) dropped into the environment by custom automated devices. The recordings used

in this study were part of a longer session that involved foraging in multiple other different size

open field environments.

Rats were anaesthetised with isoflurane and given intraperitoneal injection of Euthanal (sodium

pentobarbital) overdose (0.5 ml / 100 g) after which they were transcardially perfused with saline,

followed by a 10% Formalin solution. Brains were removed and stored in 10% Formalin and 30%

Sucrose solution for 3-4 days prior to sectioning. Subsequently, 50 µm frozen coronal sections were
cut using a cryostat, mounted on gelatine coated or positively charged glass slides, stained with

cresyl violet and cleared with clearing agent (Histo-Clear II), before covering with DPX and coverslips.

Sections were then inspected using Olympus microscope and tetrode tracks reaching into CA1

pyramidal cell layer were verified.

Interneurons were classified based on waveform shape, minimum firing rate across multiple

environments and lack of spatial stability. Specifically, classified interneurons had waveform half-

width less than 0.15 ms, maximum ratio of amplitude to trough of 0.4, minimum firing rate of 4
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Hz and maximal 0.75 spatial correlation of ratemaps from first and last half of the recording in

any environment. Note that we used the spatial stability in order to differentiate interneurons

from place cells or grid cells, with no influence on the directional stability of the head direction cell

analysis.

Calcium recordings from CA1
All procedures were conducted in accordance to UK Home Office regulations.

One GCaMP6f mouse (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, Jacksons) was implanted with an

imaging cannula (a 3mm diameter x 1.5mm height stainless-steel cannula with a glass coverslip at

the base) over CA1 (stereotaxic coordinates: AP=-2.0, ML=-2.0 from bregma). A 3mm craniotomy

was drilled at these coordinates. The cortex was removed via aspiration to reveal the external

capsule of the hippocampus. The cannula was inserted into the craniotomy and secured to the skull

with dental cement. A metal head-plate was glued to the skull and secured with dental cement. The

animal was left to recover for at least one week after surgery before diet restriction and habituation

to head-fixation commenced.

Following a period of handling and habituation, the mouse was head-fixed above a styrofoam wheel

and trained to run for reward through virtual reality environments, presented on 3 LCD screens that

surrounded the animal. ViRMEn software (Aronov and Tank, 2014) was used to design and present
the animal with virtual reality linear tracks. Movement of the animal on the wheel was recorded

with a rotatory encoder and lead to corresponding translation through the virtual track. During the

experimental phase of the training, the animal was trained to run down a 230cm linear track and

was required to lick at a reward port at a fixed, unmarked goal location within the environment

in order to trigger release of a drop of condensed milk. Licks were detected by an optical lick

detector, with an IR LED and sensor positioned on either side of the animal’s mouth. When the

animal reached the end of the linear track, a black screen appeared for 2 seconds and the animal

was presented with the beginning of the linear track, starting a new trial.

Imaging was conducted using a two-photon microscope (resonant scanning vivoscope, Scientifica)

using 16x/0.8-NA water-immersion objective (Nikon). GCaMP was excited using a Ti:sapphire laser

(Mai Tai HP, Spectra-Physics), operated with an excitation wavelength of 940nm. ScanImage software

was used for data collection / to interface with the microscope hardware. Frames were acquired at

a rate of 30Hz.

The Suite2p toolbox (Pachitariu et al., 2017) was used to motion correct the raw imaging frames
and extract regions of interest, putative cells.

Tetrode recordings from auditory cortex
Sound-evoked neuronal responses were obtained via chronically-implanted electrodes in the right

hemisphere auditory cortex of one 17-week-old male mouse (M. musculus, C57Bl/6, Charles River).

All experimental procedures were carried out in accordance with the institutional animal welfare

guidelines and a UK Home Office Project License approved under the United Kingdom Animals

(Scientific Procedures) Act of 1986.

During recordings, the animal was allowed to freely move within a 11x21 cm cardboard enclosure,

with one wall consisting of an acoustically-transparent mesh panel to allow unobstructed sound

stimulation. Acoustic stimuli were delivered via two free-field electrostatic speakers (Tucker-Davis

Technologies, FL, USA) placed at ear level, 7 cm from the edge of the enclosure. Recordings were
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performed inside a double-walled soundproof booth (IAC Acoustics), whose interior was covered

by 4-cm thick acoustic absorption foam (E-foam, UK). Pure tones were generated using MATLAB

(Matlab version R2015a; MathWorks, Natwick, MA, USA), and played via a digital signal processor

(RX6, Tucker Davis Technologies, FL, USA). The frequency response of the loudspeaker was ±10

dB across the frequency range used for stimulation. Pure tones of a duration of 200ms (including

5 ms linear rise and fall times) of variable frequencies (4-64 kHz in 0.1 octave increments) were

used for stimulation. The tones were presented at 65dB SPL at the edge of the testing box. The

41 frequencies were presented pseudo-randomly, separated by a randomly varying inter-stimulus

interval ranging from 500 to 510ms, for a total of 20 repetitions.

Extracellular electrophysiological recordings were obtained using a custom chronically-implanted

64-channel hyperdrive with two 32-channel Omnetics connectors (A79026-001) and 16 individually

movable tetrodes (FlexDrive, (Voigts et al., 2013)). Tetrodes were made from 12.7 µm tungsten
wire (99.95%, HFV insulation, California Fine Wire, USA) gold-plated to reduce impedance to 200kΩ

at 1kHz (NanoZ, Multichannel Systems). Neuronal signals were collected and amplified using two

32-channel amplifier boards (Intan RHD 2132 headstages) and an Open Ephys recording system

(Siegle et al., 2017) at 30kHz.

Data Preprocessing
Raw electrophysiological traces as well as calcium traces were transformed to a frequency repre-

sentation using discrete-wavelet transformation (DWT). We decided to use wavelet transformation

instead of windowed Fourier transform (WFT) as we expected a wide range of dominant frequencies

in our signal for which the wavelet transformation is more appropriate (Torrence and Compo,
1998). For the wavelet transformation, we used the morlet wavelet:

ψ0(η) = π−
1
4 ∗ exp(i ∗ ω0 ∗ η) ∗ exp(−η2/2) (1)

with a non-dimensional frequency constant w0 = 6. We noticed that downscaling the wavelets
improved our model performance, prompting us to use an additional preprocessing step which

effectively decreased the sampling rate of the wavelets to ψS Ra f ter = ψS Rbe f ore/M by a factor of M. This
can also be seen as an additional convolutional layer with a kernel size of M, a stride of M and
weights fixed to

1
M . We performed a hyperparameter search for M with a simplified model and

found the best performing model with M = 1000, thus effectively decreasing our sampling rate from
30000 to 30.

As additional preprocessing steps we applied channel and frequency wise normalization using a

median absolute deviation (MAD) approach. We calculated the median and the corresponding

median absolute deviation for each frequency and channel on the training set and normalized our

inputs as follows:

Xi =
Xi − X̃i

median(|Xi − X̃i|)
(2)

where X̃i is the median of Xi. This approach turned out to be more robust against outliers in

the signal than simple mean normalization. Additional min-max scaling did not further improve

performance.
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Bayesian decoder
As a baseline model, we used a Bayesian decoder which was trained on manually sorted and

clustered spikes. Given a time window T and number of spikes K = (k1, ...kN) fired by N place cells,
we can calculate the probability P(K|x), estimating the number of spikes K at location x:

P(K|x) =
∏

Poisson(ki,Tαi(x)) =

N∏
i=1

(Tαi(x))ki

ki!
(3)

where αi(x) is the firing rate of cell i at position x. From this we can calculate the probability of the
animals location given the observed spikes:

P(x|K) = P(x)
N∏

i=1

αi(x)ki exp(−T
N∑

i=1

αi(x)) (4)

where P(x) is the historic position of the animal which we use to constrain P(x|K) to provide a fair
comparison to the convolutional decoder. The final estimate of position is based on the peak of

P(x|K):

x̂ = argmaxxP(x|K) (5)

We used the same cross-validation splits as for the convolutional model and calculate the euclidean

distance between the real and decoded position. We use a gaussian smoothing kernel with σ = 1.5
and a bin size of 2cm for binning and smoothing the ratemaps, and use a bin length of 0.5s.

Convolutional neural network
The model takes a three-dimensional wavelet transformed signal as input and uses convolutional

layers connected to a regression head to decode continuous behaviour. We use a kernel size of

3 throughout the model and keep the number of filters constant at 64 for the first 8 layers while

sharing the weights over the channel axis, while then doubling them for each following layer. For

downsampling the input we use a stride of 2, intermixed between the time and frequency dimension

(Table S1, Fig 1B). We use 2D-convolutions on a three-dimensional input to lower computational load

and GPU memory consumption but also to improve generalization. To achieve this, we share the

weights across the channel dimension for the first 8 convolutions and across the time dimension

for the last 6 convolutional layers. Sharing the weights across channels prevents overfitting to any

channel specific feature, making sure there exists a global representation e.g. of spikes or other

prominent oscillations in the local field potential.

We extensively investigated the use of a convolutional long-short-term-memory (LSTM) after the

initial convolutions, where we used backpropagation through time on the time dimension. In a

simplified model this led to a small decrease in decoding error for the model trained on position.

We nevertheless decided to employ a model with only simple convolutions as one important aspect

of this model is the simplicity of use for a neuroscientist. Moreover we experimented with using

a wavenet (Oord et al., 2016) inspired model directly on the raw electrophysiological signal but
noticed that the model using the wavelet transformed input outperformed the wavenet approach by

a margin of around 20cm for the positional decoding. The wavenet inspired model was considerably

slower to train and therefore a full hyperparameter search could not be performed.
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Model training
The model takes as input a three-dimensional wavelet transformed signal corresponding to time,

frequency and channels, with frequencies logarithmically scaled between 0Hz-15000Hz. An optimal

temporal window of T=64 (corresponding to 2.13s) was established by hyperparameter search

taking into account the tradeoff between speed of training and model error. We randomly sampled

inputs and outputs from the training set. Each input had corresponding outputs for the position (X,

Y in cm), head direction (in radians) and speed (in cm/s). We used Adam as our learning algorithm

with a learning rate of 0.0007 and stopped training after we sampled 18000 samples, divided into

150 batches for 15 epochs, each batch consisting of 8 samples. During training we multiplied the

learning rate by 0.2 if validation performance did not improve for 3 epochs. We performed random

hyperparameter search for the following parameters: learning rate, dropout, number of units

in the fully connected layer and number of input timesteps. For calculating the chance level we

used a shuffling procedure in which the wavelet transformed electrophysiological signal is shifted

relative to its corresponding position. After shuffling we trained the model with the same setting as

the unshuffled model and for the same number of epochs. The training was performed on one

GTX1060 using Keras with Tensorflow as backend.

Model comparison
In order to compare the performance of the network against the Bayesian decoder we simulated

both models in a setting with artificially reduced inputs. We used 1 to 32 tetrodes as input for both

decoders, with tetrodes taken top to bottom in order of the given tetrode number. The input of

run 1 was then comprised of tetrodes 1 to 32, while run 2 used tetrodes 1 to 31. The last run uses

only the first tetrode as input to both models. We then retrained both models with the artificially

reduced number of tetrodes making sure both models have the same cross-validation splits and

report decoding errors as the average of each cross-validation split.

Model evaluation
For adjusting the model weights during training we use different loss terms depending on the

behaviour or stimuli which we decode.

LED =

√√√ M∑
i=1

(ŷi − yi)2 LMS E =
1
M

M∑
i=1

(ŷi − yi) LCMAE = min[|ŷi − yi|, |ŷi − yi| + π, |ŷi − yi| − π] (6)

For decoding of position from tetrode CA1 recordings we try to minimize the Euclidean loss between

predicted and ground truth position (LED). We use the mean squared error for the decoding of

speed (LMS E) and the cyclical absolute error for decoding of head direction (LCMAE). For all other

behaviours or stimuli we use LMS E as the default optimizer.

We decided to use R2 scores to measure model performance across different behaviours, brain

areas and recording techniques. We use the formulation of fraction of variance accounted for (FVAF)

instead of the squared Pearson’s correlation coefficient. Both terms are based on the fraction of

the residual sum of squares and the total sum of squares:

R2 = 1 −
∑M

i=1(yi − αŷi − β)2∑M
i=1(yi − ȳ)

(7)

with yi the ground truth of sample i, ŷi the predicted value and ȳ the mean value. Here, Pearson’s
correlation coefficient tries to maximize R2 by adjusting α and β while FVAF uses α = 1 and β = 0
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(Fagg et al., 2009). This provides a more conservative measure of performance as FVAF requires
that prediction and ground truth fit without scaling the predicted values. FVAF in turn is has no

lower bound as the prediction can be arbitrarily worse with a given scaling constant (i.e. given a

ground truth value of 10, a prediction of 1000 has a lower (worse) R2 score than a prediction of 100).

Influence maps
To investigate which frequencies, channels or timepoints were informative for the respective

decoding we performed a bootstrapping procedure after training the models. For each sample in

time we calculated the real decoding error eo for each behaviour by using the wavelets as input. We

then shuffle the wavelets for a particular frequency and re-calculate the error. We then define the

influence of a given frequency or channel as the relative change:
es−eo

eo
where eo is the original error

and es the shuffled error. We repeat this for the channel and time dimension to get an estimate of

how much influence each channel or timepoint has on the decoding of a given behaviour.

We also tried calculating sample gradients with respect to our inputs (Simonyan et al., 2013). For
this we calculated the derivative w by back-propagation for each sample and with respect to the
inputs. In contrast to class saliency maps, we obtain a gradient estimate indicating how much each

part of the input strongly drives the regression output. We calculate saliency maps for each sample

cross-validated over the entire experiment. For deriving influence maps from the raw gradients we

calculate the variance across the time dimension and use this as an estimate of how much influence

each frequency band or channel has on the decoding. This method however introduces a lot of

high-frequency noise in the gradients, possibly coming from the strides in the convolutional layers

used throughout the model (Olah et al., 2017).
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SUPPLEMENTARY MATERIAL

Figure S1: Model performance across different recording techniques and behaviours
We calculated the R2-score between the real behaviour and decoded behaviour for decoding of position, head direction, speed and

auditory stimuli for tetrode and two-photon recordings. For all recordings, we use the raw data as input for the wavelet preprocessing

and use the same architecture by only adjusting the last layer in order to incorporate different loss terms. The y-axis shows the R2-score,

a measure of variance captured, with a max value of 1 and arbitrarily low negative values.
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Figure S2: Speed-Power correlation
We calculated the Spearman correlation between the wavelet transformed electrophysiological signal and the instantaneous speed of

the animal across frequencies from 2 to 15000Hz. Shaded area indicates 95% confidence interval (data from five rats).
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Figure S3: Influence of decoding across channels
(A) Channel influence scores for positional decoding (left). The most influential channel for the positional decoding has a high number

of place cells (right). Average ratemap of all clusters (top, n=21) and four example clusters (bottom) shown. (B) Influence scores per

tetrode (average influence over 4 channels) highly correlates with number of place cells on the tetrode, indicating that the network is

correctly identifying place cells as the spatially most informative neural correlate.
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Layer Type Input Dimension Kernel Size Strides Filters

1 2D - Convolution (64, 26, 128) (3,3) (2,1) 64

2 2D - Convolution (32, 26, 128) (3,3) (1,2) 64

3 2D - Convolution (32, 13, 128) (3,3) (2,1) 64

4 2D - Convolution (16, 13, 128) (3,3) (1,2) 64

5 2D - Convolution (16, 7, 128) (3,3) (2,1) 64

6 2D - Convolution (8, 7, 128) (3,3) (1,2) 64

7 2D - Convolution (8, 4, 128) (3,3) (2,1) 64

8 2D - Convolution (4, 4, 128) (3,3) (1,2) 64

9 2D - Convolution (4, 2, 128) (3,2) (1,2) 64

10 2D - Convolution (4, 2, 64) (3,2) (1,2) 128

11 2D - Convolution (4, 2, 32) (3,2) (1,2) 128

12 2D - Convolution (4, 2, 16) (3,2) (1,2) 128

13 2D - Convolution (4, 2, 8) (3,2) (1,2) 128

14 2D - Convolution (4, 2, 4) (3,2) (1,2) 128

15 2D - Convolution (4, 2, 2) (3,2) (1,2) 128

16 Fully Connected (4, 512) - - 1024

17 Fully Connected (4, ) - - 2/1

Table S1: Layer by layer architecture of the convolutional model
Note that the first layers 1-8 share the weights over the channel dimension while layers 9-15 share the weights across the time

dimension. Layers 9 to 15 depict the kernel sizes and strides for the tetrode recordings with 128 channels. For recordings with different

number of channels we adjust the number of downsampling layers to match the dimension of layer 15. Order of dimensions: Time,

Frequency, Channels.
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