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Abstract There are rich structures in off-task neural activity which are hypothesized to reflect

fundamental computations across a broad spectrum of cognitive functions. Here, we develop an

analysis toolkit – temporal delayed linear modelling (TDLM) – for analysing such activity. TDLM is a

domain-general method for finding neural sequences that respect a pre-specified transition graph.

It combines nonlinear classification and linear temporal modelling to test for statistical regularities

in sequences of task-related reactivations. TDLM is developed on the non-invasive neuroimaging

data and is designed to take care of confounds and maximize sequence detection ability. Notably,

as a linear framework, TDLM can be easily extended, without loss of generality, to capture rodent

replay in electrophysiology, including in continuous spaces, as well as addressing second-order

inference questions, for example, its temporal and spatial varying pattern. We hope TDLM will

advance a deeper understanding of neural computation and promote a richer convergence

between animal and human neuroscience.

Introduction
Human neuroscience has made remarkable progress in detailing the relationship between the repre-

sentations of different stimuli during task performance (Haxby et al., 2014; Kriegeskorte et al.,

2008; Barron et al., 2016). At the same time, it is increasingly clear that resting, off-task, brain activ-

ities are structurally rich (Smith et al., 2009; Tavor et al., 2016). An ability to study spontaneous

activity with respect to task-related representation is important for understanding cognitive process

beyond current sensation (Higgins et al., 2021). However, unlike the case for task-based activity, lit-

tle attention has been given to techniques that can measure representational content of resting

brain activity in humans.
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Unlike human neuroscience, representational content of resting activity is studied extensively in

animal neuroscience. One seminal example is ‘hippocampal replay’ (Wilson and McNaughton,

1994; Skaggs and McNaughton, 1996; Louie and Wilson, 2001; Lee and Wilson, 2002): during

sleep, and quiet wakefulness, place cells in the hippocampus (that signal self-location during periods

of activity) spontaneously recapitulate old, and explore new, trajectories through an environment.

These internally generated sequences are hypothesized to reflect a fundamental feature of neural

computation across tasks (Foster, 2017; Ólafsdóttir et al., 2018; Pfeiffer, 2020; Carr et al., 2011;

Lisman et al., 2017). Numerous methods have been proposed to analyse hippocampal replay

(Davidson et al., 2009; Grosmark and Buzsáki, 2016; Maboudi et al., 2018). However, they are

not domain general in that they are designed to be most suited for specific needs, such as particular

task design, data modality, or research question (van der Meer et al., 2020; Tingley and Peyrache,

2020). Most commonly, these methods apply to invasive electrophysiology signals, aiming to detect

sequences in a linear track during spatial navigation task (Tingley and Peyrache, 2020). As a result,

they cannot be directly adapted for analysing human resting activity collected using non-invasive

neuroimaging techniques. Furthermore, in rodent neuroscience, it is non-trivial to adapt these algo-

rithms to even small changes in tasks (such as 2D foraging). This may be a limiting factor in taking

replay analyses to more interesting and complex tasks, such as complex mazes (Rosenberg et al.,

2021).

Here, we introduce temporal delayed linear modelling (TDLM), a domain-general analysis toolkit,

for characterizing temporal structure of internally generated neural representations in rodent elec-

trophysiology as well as human neuroimaging data. TDLM is inspired by existing replay detection

methods (Skaggs and McNaughton, 1996; Davidson et al., 2009; Grosmark and Buzsáki, 2016),

especially those analysis of population of replay events (Grosmark and Buzsáki, 2016). It is devel-

oped based on the general linear modelling (GLM) framework and can therefore easily accommo-

date testing of ‘second-order’ statistical questions (van der Meer et al., 2020), such as whether

there is more forward than reverse replay, or is replay strength changing over time, or differs

between behavioural conditions. This type of question is ubiquitous in cognitive studies, but is typi-

cally addressed ad hoc in other replay detection methods (van der Meer et al., 2020). In TDLM,

such questions are treated naturally as linear contrasts of effects in a GLM.

Here, we show TDLM is suited to measure the average amount of replay across many events (i.e.

replay strength) in linear modelling. This makes it applicable to both rodent electrophysiology and

human neuroimaging. Applying TDLM on non-invasive neuroimaging data in humans, we, and

others, have shown it is possible to measure the average sequenceness (propensity for replay) in

spontaneous neural representations (Wimmer et al., 2020; Nour et al., 2021; Liu et al., 2019;

Liu et al., 2021a). The results resemble key characteristics found in rodent hippocampal replay and

inform key computational principles of human cognition (Liu et al., 2019).

In the following sections, we first introduce the logic and mechanics of TDLM in detail, followed

by a careful treatment of its statistical inference procedure. We test TDLM in both simulation (see

section ‘Simulating MEG data’) and real human MEG/EEG data (see section ‘Human replay dataset’).

We then turn to rodent electrophysiology and compare TDLM to existing rodent replay methods,

extending TDLM to work on a continuous state space. Lastly, using our approach we re-analyse

rodent electrophysiology data from Ólafsdóttir et al., 2016 (see section ‘Rodent replay dataset’)

and show what TDLM can offer uniquely compared to existing methods in rodent replay analysis.

To summarize, TDLM is a general, and flexible, tool for measuring neural sequences. It facilitates

cross-species investigations by linking large-scale measurements in humans to single-neuron meas-

urements in non-human species. It provides a powerful tool for revealing abstract cognitive pro-

cesses that extend beyond sensory representation, potentially opening doors for new avenues of

research in cognitive science.

Results

Temporal delayed linear modelling
Overview of TDLM
Our primary goal is to test for temporal structure of neural representations in humans. However, to

facilitate cross-species investigation (Barron et al., 2021), we also want to extend this method to
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enable measurement of sequences in other species (e.g. rodents). Consequently, this sequence

detection method has to be domain general. We chose to measure sequences in a decoded state

space (e.g. posterior estimated locations in rodents [Grosmark and Buzsáki, 2016] or time course

of task-related reactivations in humans [Liu et al., 2019]) as this makes results from different data

types comparable.

Ideally, a general sequence detection method should (1) uncover structural regularities in the

reactivation of neural activity, (2) control for confounds that are not of interest, and (3) test whether

this regularity conforms to a hypothesized structure. To achieve these goals, we developed the

method under a GLM framework, and henceforth refer to it as temporal delayed linear modelling,

that is, TDLM. Although TDLM works on a decoded state space, it still needs to take account of con-

founds inherent in the data where the state space is decoded from. This is a main focus of TDLM.

The starting point of TDLM is a set of n time series, each corresponding to a decoded neural

representation of a task variable of interest. This is what we call the state space, X, with dimension

of time by states. These time series could themselves be obtained in several ways, described in

detail in a later section (‘Getting the states’). The aim of TDLM is to identify task-related regularities

in sequences of these representations.

Consider, for example, a task in which participants have been trained such that n = 4 distinct sen-

sory objects (A, B, C, and D) appear in a consistent order :A ! B ! C ! D (Figure 1a, b). If we are

interested in replay of this sequence during subsequent resting periods (Figure 1c, d), we might

want to ask statistical questions of the following form: ’Does the existence of a neural representation

of A, at time T, predict the occurrence of a representation of B at time T+ Dt?’ and similarly for

B ! C and C ! D.

In TDLM, we ask such questions using a two-step process. First, for each of the n2 possible pairs

of variables Xi and Xj, we find the linear relation between the Xi time series and the Dt-shifted Xj time

series. These n2 relations comprise an empirical transition matrix, describing how likely each variable

is to be succeeded at a lag of Dt by each other variable (Figure 1e). Second, we linearly relate this

empirical transition matrix with a task-related transition matrix of interest (Figure 1f). This produces

a single number that characterizes the extent to which the neural data follow the transition matrix of

interest, which we call ‘sequenceness’. Finally, we repeat this entire process for all Dt of interest,

yielding a measure of sequenceness at each possible lag between variables and submit this for sta-

tistical inference (Figure 1g).

Note that, for now, this approach decomposes a sequence (such as A ! B ! C ! D) into its con-

stituent transitions and sums the evidence for each transition. Therefore, it does not require that the

transitions themselves are sequential: A ! B and B ! C could occur at unrelated times, so long as

the within-pair time lag was the same. For interested readers, we address how to strengthen the

inference by looking explicitly for longer sequences in Appendix 1: Multi-step sequences.

Constructing the empirical transition matrix
In order to find evidence for state-to-state transitions at some time lag Dt, we could regress a time-

lagged copy of one state, Xj, onto another, Xi (omitting residual term e in all linear equations):

Xj tþDtð Þ ¼ Xi tð Þbij (1)

Instead, TDLM chooses to include all states in the same regression model for important reasons,

detailed in section ‘Moving to multiple linear regression’:

Xj tþDtð Þ ¼
X

n

k¼1

Xk tð Þbkj (2)

In this equation, the values of all states Xk at time t are used in a single multilinear model to pre-

dict the value of the single state Xj at time tþDt.

The regression described in Equation 2 is performed once for each Xj, and these equations can

be arranged in matrix form as follows:

X Dtð Þ ¼ Xb (3)

Each row of X is a time point, and each of the n columns is a state. X Dtð Þ is the same matrix as X,
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but with the rows shifted forwards in time by Dt. bij is an estimate of the influence of Xi tð Þ on

Xj tþDtð Þ. b is an n� n matrix of weights, which we call the empirical transition matrix.

To obtain b, we invert Equation 3 by ordinary least squares regression:

b¼ XTX
� ��1

XTX Dtð Þ (4)

This inversion can be repeated for each possible time lag ( Dt¼ 1;2;3; . . .), resulting in a separate

empirical transition matrix b at every time lag. We call this step the first-level sequence analysis.
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Figure 1. Task design and illustration of temporal delayed linear modelling (TDLM). (a) Task design in both simulation and real MEG data. Assuming

there is one sequence, A->B->C->D, indicated by the four objects at the top. During the task, participants are shown the objects and asked to figure

out a correct sequence for these objects while undergoing MEG scanning. A snapshot of MEG data is shown below. It is a matrix with dimensions of

sensors by time. (b) The transitions of interest are shown, with the red and blue entries indicating transitions in the forward and backward direction,

respectively. (c) The first step of TDLM is to construct decoding models of states from task data, and (d) then transform the data (e.g. resting-state) from

sensor space to the state space. TDLM works on the decoded state space throughout. (e) The second step of TDLM is to quantify the temporal

structure of the decoded states using multiple linear regressions. The first-level general linear modelling (GLM) results in a state*state regression

coefficient matrix (empirical transition matrix), b, at each time lag. (f) In the second-level GLM, this coefficient matrix is projected onto the hypothesized

transition matrix (black entries) to give a single measure of sequenceness. Repeating this process for the number of time lags of interest generates

sequenceness over time lags (right panel). (g) The statistical significance of sequenceness is tested using a non-parametric state permutation test by

randomly shuffling the transition matrix of interest (in grey). To control for multiple comparisons, the permutation threshold is defined as the 95th

percentile of all shuffles on the maximum value over all tested time lags. (h) The second-level regressors Tauto, Tconst , TF , and TB, as well as two examples

of the permuted transitions of interest, Tpermute(for constructing permutation test), are shown.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Source localization of stimuli-evoked neural activity in MEG.
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Testing the hypothesized transitions
The first-level sequence analysis assesses evidence for all possible state-to-state transitions. The next

step in TDLM is to test for the strength of a particular hypothesized sequence, specified as a transi-

tion matrix,T. Therefore, we construct another GLM which relates T to the empirical transition matrix,

b. We call this step the second-level sequence analysis:

b¼
X

r

r¼1

Z rð Þ �Tr (5)

As noted above, b is the empirical transition matrix obtained from first-stage GLM. It has dimen-

sion of n by n, where n is the number of states. Each entry in b reflects the unique contribution of

state i to state j at given time lag. Effectively, the above equation models this empirical transition

matrix b as a weighted sum of prespecified template matrices, Tr. Thus, r is the number of regres-

sors included in the second-stage GLM, and each scalar valued Z rð Þ is the weight assigned to the

r th template matrix. Put in other words, Tr constitutes the regressors in the design matrix, each of

which has a prespecified template structure, for example, Tauto, Tconst, TF , and TB (Figure 1h).

TF and TB are the transpose of each other (e.g. red and blue entries in Figure 1b), indicating tran-

sitions of interest in forward and backward direction, respectively. In 1D physical space, TF and TB

would be the shifted diagonal matrices with ones on the first upper and lower off diagonals. Tconst is

a constant matrix that models away the average of all transitions, ensuring that any weight on TF

and TB reflects its unique contribution. Tauto is the identity matrix. Tauto models self-transitions to con-

trol for autocorrelation (equivalently, we could simply omit the diagonal elements from the

regression).

Z is the weights of the second-level regression, which is a vector with dimension of 1 by r. Each

entry in Z reflects the strength of the hypothesized transitions in the empirical ones, that is,

sequenceness. Repeating the regression of Equation 5 at each time lag (Dt ¼ 1; 2; 3; . . .) results in

time courses of the sequenceness as a function of time lag (e.g. the solid black line in Figure 1f). ZF,

ZB are the forward and backward sequenceness, respectively (e.g. red and blue lines in Figure 1g).

In many cases, ZF and ZB will be the final outputs of a TDLM analysis. However, it may sometimes

also be useful to consider the quantity:

D¼ ZF �ZB (6)

D contrasts forward and backward sequences to give a measure that is positive if sequences

occur mainly in a forward direction and negative if sequences occur mainly in a backward direction.

This may be advantageous if, for example, ZF and ZB are correlated across subjects (due to factors

such as subject engagement and measurement sensitivity). In this case, D may have lower cross-sub-

ject variance than either ZF or ZB as the subtraction removes common variance.

Finally, to test for statistical significance, TDLM relies on a non-parametric permutation-based

method. The null distribution is constructed by randomly shuffling the identities of the n states many

times and re-calculating the second-level analysis for each shuffle (Figure 1g). This approach allows

us to reject the null hypothesis that there is no relationship between the empirical transition matrix

and the task-defined transition of interest. Note that there are many incorrect ways to perform per-

mutations, which permute factors that are not exchangeable under the null hypothesis and therefore

lead to false positives. We examine some of these later with simulations and real data. In some

cases, it may be desirable to test slightly different hypotheses by using a different set of permuta-

tions; this is discussed later.

If the time lag Dt at which neural sequences exist is not known a priori, then we must correct for

multiple comparisons over all tested lags. This can be achieved by using the maximum ZF across all

tested lags as the test statistic (see details in section ’Correcting for multiple comparisons’). If we

choose this test statistic, then any values of ZF exceeding the 95th percentile of the null distribution

can be treated as significant at a ¼ 0:05 (e.g. the grey dotted line in Figure 1g).
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TDLM steps in detail
Getting the states
As described above, the input to TDLM is a set of time series of decoded neural representations or

states. Here, we provide different examples of specific state spaces (X, with dimension of time by

states) that we have worked with using TDLM.

States as sensory stimuli
The simplest case, perhaps, is to define a state in terms of a neural representation of sensory stimuli,

for example, face, house. To obtain their associated neural representation, we present these stimuli

in a randomized order at the start of a task and record whole-brain neural activity using a non-inva-

sive neuroimaging method, for example, Magnetoencephalography (MEG) or Electroencephalogra-

phy (EEG). We then train a model to map the pattern of recorded neural activity to the presented

image (Figure 1—figure supplement 1). This could be any of the multitude of available decoding

models. For simplicity, we used a logistic regression model throughout.

The states here are defined in terms of stimuli-evoked neural activity. The classifiers are trained at

200 ms post-stimulus onset. For example, the stimuli are faces, buildings, body parts, and objects.

Source localizing the evoked neural activity, we found that the activation patterns of stimuli in MEG

signal are consistent with those reported in fMRI literature. For faces, activation peaked in a region

roughly consistent with the fusiform face area (FFA) as well as the occipital face area (OFA). Activa-

tion for building stimuli was located between a parahippocampal place area (PPA) and retrosplenial

cortex (RSC), a region also known to respond to scene and building stimuli. Activation for body part

stimuli localized to a region consistent with the extrastriate body area (EBA). Activation for objects

was in a region consistent with an object-associated lateral occipital cortex (LOC) as well as an ante-

rior temporal lobe (ATL) cluster that may relate to conceptual processing of objects. Those maps are

thresholded to display localized peaks. The full un-thresholded maps can be found at https://neuro-

vault.org/collections/6088/. This is adapted from Wimmer et al., 2020.

In MEG/EEG, neural activity is recorded by multiple sensor arrays on the scalp. The sensor arrays

record whole-brain neural activity at millisecond temporal resolution. To avoid a potential selection

bias (given the sequence is expressed in time), we choose whole-brain sensor activity at a single

time point (i.e. spatial feature) as the training data fed into classifier training.

Ideally, we would like to select a time point where the neural activity can be most truthfully read

out. This can be indexed as the time point that gives the peak decoding accuracy. If the state is

defined by the sensory features of stimuli, we can use a classical leave-one-out cross-validation

scheme to determine the ability of classifiers to generalize to unseen data of the same stimulus type

(decoding accuracy) at each time point (see Appendix 2 for its algorithm box). In essence, this cross-

validation scheme is asking whether the classifier trained on this sensory feature can be used to clas-

sify the unseen data of the same stimuli (Figure 2a, b).

After we have identified the peak time point based on the cross-validation, we can train the

decoding models based on the multivariate sensor data at this given time.

Specifically, let us denote the training data, M, with dimension of number of observations, b, by

number of sensors, s. The labels, Y, have dimension of b by 1. The aim here is to obtain the classifier

weights, W, so that Y »s MWð Þ. s is the logistic sigmoid function.

Normally we apply L1 regularization on the inference of weights (we will detail the reasons in sec-

tion ‘Regularization’):

W¼
W

argmax log P YjM;Wð Þð ÞþblL1jjWj½ j
1
� (7)

Next, we translate the data at testing time (e.g. during rest), R, from sensor space to the decoded

state space:

X ¼ s RWð Þ (8)

where R is the testing data, with dimension of time by sensors, and X is the decoded state space,

with dimension of time by states.
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States as abstractions
As well as sequences of sensory representations, it is possible to search for replay of more

abstract neural representations. Such abstractions might be associated with the presented image

(e.g. mammal vs. fish), in which case analysis can proceed as above by swapping categories for

images (Wimmer et al., 2020). A more subtle example, however, is where the abstraction pertains

to the sequence or graph itself. In space, for example, grid cells encode spatial coordinates in a fash-

ion that abstracts over the sensory particularities of any one environment, and therefore can be

reused across environments (Fyhn et al., 2007). In human studies, similar representations have been

observed for the location in a sequence (Liu et al., 2019; Dehaene et al., 2015). For example, dif-

ferent sequences have shared representations for their second items (Figure 2). These representa-

tions also replay (Liu et al., 2019). However, to measure this replay we need to train decoders for

these abstract representations. This poses a conundrum as it is not possible to elicit the abstract rep-

resentations in the absence of the concrete examples (i.e., the sensory stimuli). Care is required to

ensure that the decoders are sensitive to the abstract code rather than the sensory representations

(see Appendix 2 for algorithm box of selecting time point for training abstract code). Useful strate-

gies include training classifiers to generalize across stimulus sets and ensuring the classifiers are

orthogonal to sensory representations (Figure 2—figure supplement 1; details in Liu et al., 2019).

One way that excludes the possibility of sensory contamination is if the structural representations

can be shown to sequence before the subjects have ever seen their sensory correlates (Liu et al.,

2019).

TDLM can also be used iteratively to ask questions about the ordering of different types of replay

events (Figure 2d). This can provide for powerful inferences about the temporal organization of

state as sensory stimuli

sensory code1:

sensory code2:

 abstract code:

conjunctive code1:

conjunctive code2:

common:

a.

b. state as abstractionsc.

...
training set

testing set

... ...
training set

testing set

state as sequence eventsd.

state A

state B

sequence
time

} }

Figure 2. Obtaining different state spaces. (a) Assuming we have two abstract codes, each abstract code has two different sensory codes (left panel).

The MEG/EEG data corresponding to each stimulus is a conjunctive representation of sensory and abstract codes (right panel). The abstract code can

be operationalized as the common information in the conjunctive codes of two stimuli. (b) Training decoding models for stimulus information. The

simplest state is defined by sensory stimuli. To determine the best time point for classifier training, we can use a classical leave-one-out cross-validation

scheme on the stimuli-evoked neural activity. (c) Training decoding models for abstracted information. The state can also be defined as the

abstractions. To extract this information, we need to avoid a confound of sensory information. We can train the classifier on the neural activity evoked

by one stimulus and test it on the other sharing the same abstract representation. If neural activity contains both a sensory and abstract code, then the

only information that can generalize is the common abstract code. (d) The state can also be defined as the sequence event itself.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sequences of abstract code.
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replay, such as the temporal structure between sequences, or the repeating pattern of the same

sequence. This more sophisticated use of TDLM merits its own consideration and is discussed in

Appendix 3: Sequences of sequences.

Controlling confounds and maximizing sensitivity in sequence detection
Here, we motivate the key features of TDLM.

Temporal correlations
In standard linear methods, unmodelled temporal autocorrelation can inflate statistical scores. Tech-

niques such as autoregressive noise modelling are commonplace to mitigate these effects

(Colclough et al., 2015; Deodatis and Shinozuka, 1988). However, autocorrelation is a particular

burden for analysis of sequences, where it interacts with correlations between the decoded neural

variables.

To see this, consider a situation where we are testing for the sequence Xi ! Xj. TDLM is inter-

ested in the correlation between Xi and lagged Xj (see Equation 1). But if the Xi and Xj time series

contain autocorrelations and are also correlated with one another, then Xi tð Þ will necessarily be cor-

related with Xj t þ Dtð Þ. Hence, the analysis will spuriously report sequences.

Correlations between states are commonplace. Consider representations of visual stimuli

decoded from neuroimaging data. If these states are decoded using an n-way classifier (forcing

exactly one state to be decoded at each moment), then the n states will be anti-correlated by con-

struction. On the other hand, if states are each classified against a null state corresponding to the

absence of stimuli, then the n states will typically be positively correlated with one another.

Notably, in our case, because these autocorrelations are identical between forward and backward

sequences, one approach for removing them is to compute the difference measure described above

(D ¼ ZF � ZB). This works well as shown in Kurth-Nelson et al., 2016. However, a downside is it pre-

vents us from measuring forward and backward sequences independently. The remainder of this sec-

tion considers alternative approaches that allow for independent measurement of forward and

backward sequences.

Moving to multiple linear regression
The spurious correlations above are induced because Xj tð Þ mediates a linear relationship between

Xi tð Þ and Xj t þ Dtð Þ. Hence, if we knew Xj tð Þ; we can solve the problem by simply controlling for it in a

linear regression, as in Granger causality (Eichler, 2007):

Xj tþDtð Þ ¼ b0þXi tð ÞbijþXj tð Þbjj (9)

Unfortunately, we do not have access to the ground truth of X because these variables have been

decoded noisily from brain activity. Any error in Xj tð Þ but not Xi tð Þ will mean that the control for auto-

correlation is imperfect, leading to spurious weight on bij, and therefore spurious inference of

sequences.

This problem cannot be solved without a perfect estimate of X, but it can be systematically

reduced until negligible. It turns out that the necessary strategy is simple. We do not know ground

truth Xj tð Þ, but what if we knew a subspace that included estimated Xj tð Þ? If we control for that whole

subspace, we would be on safe ground. We can get closer and closer to this by including further co-

regressors that are themselves correlated with estimated Xj tð Þ with different errors from ground truth

Xj tð Þ. The most straightforward approach is to include the other states of X tð Þ, each of which has dif-

ferent errors, leading to the multiple linear regression of Equation 2.

Figure 3a shows this method applied to the same simulated data whose correlation structure

induces false positives in the simple linear regression of Equation 1, and by the same logic, so too in

cross-correlation. This is why previous studies based on a cross-correlation (Eldar et al., 2018;

Kurth-Nelson et al., 2016) cannot look for sequenceness in forward and backward directions sepa-

rately, but have to rely on their asymmetry. The multiple regression accounts for the correlation

structure of the data and allows correct inference to be made. Unlike the simple subtraction method

proposed above (Figure 3a, left panel), the multiple regression permits separate inference on for-

ward and backward sequences.
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Oscillations and long timescale autocorrelations
Equation 2 performs multiple regression, regressing each Xj t þ Dtð Þ onto each Xi tð Þ whilst controlling

for all other state estimates at time t. This method works well when spurious relationships between

Xi tð Þ and Xj t þ Dtð Þ are mediated by the subspace spanned by the other estimated states at time t (in

particular, Xj tð Þ). One situation in which this assumption might be challenged is when replay is super-

imposed on a large neural oscillation. For example, during rest (which is often the time of interest in

replay analysis), MEG and EEG data often express a large alpha rhythm, at around 10 Hz.

If all states experience the same oscillation at the same phase, the approach correctly controls

false positives. The oscillation induces a spurious correlation between Xi tð Þ and Xj t þ Dtð Þ, but, as

before, this spurious correlation is mediated by Xj tð Þ.

However, this logic fails when states experience oscillations at different phases. This scenario may

occur, for example, if we assume there are travelling waves in cortex (Lubenov and Siapas, 2009;

Wilson et al., 2001) because different sensors will experience the wave at different times and differ-

ent states have different contributions from each sensor. MEG sensors can be seen as measures of

local field potential on the scalp, which contain background neural oscillations. In humans, this is

dominantly alpha during rest.
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Figure 3. Effects of temporal, spatial correlations, and classifier regularization on temporal delayed linear modelling (TDLM). (a) Simple linear

regression or cross-correlation approach relies on an asymmetry of forward and backward transitions; therefore, subtraction is necessary (left panel).

TDLM instead relies on multiple linear regression. TDLM can assess forward and backward transitions separately (right panel). (b) Background alpha

oscillations, as seen during rest periods, can reduce sensitivity of sequence detection (left panel), and controlling alpha in TDLM helps recover the true

signal (right panel). (c) The spatial correlation between the sensor weights of decoders for each state reduces the sensitivity of sequence detection. This

suggests that reducing overlapping patterns between states is important for sequence analysis. (d) Adding null data to the training set increases the

sensitivity of sequence detection by reducing the spatial correlations of the trained classifier weights. Here, the number indicates the ratio between null

data and task data. ‘1’ means the same amount of null data and the task data. ‘0’ means no null data is added for training. (e) L1 regularization helps

sequence detection by reducing spatial correlations (all red dots are L1 regularization with a varying parameter value), while L2 regularization does not

help sequenceness (all blue dots are L2 regularization with a varying parameter value) as it does not reduce spatial correlations of the trained classifiers

compared to the classifier trained without any regularization (green point).
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In this case, Xi tð Þ predicts Xj t þ Dtð Þ over and above Xj tð Þ. To see this, consider the situation where

Dt is 1

4
t (where t is the oscillatory period) and the phase shift between Xi tð Þ and Xj tð Þ is pi/2. Now

every peak in Xj t þ Dtð Þ corresponds to a peak in Xi tð Þ but a zero of Xj tð Þ.

To combat this, we can include phase-shifted versions/more time points of X tð Þ. If dominant back-

ground oscillation is at alpha frequency (e.g. 10 Hz), neural activity at time T would be correlated

with activity at time T + t . We can control for that by including X t þ tð Þ, as well as X tð Þ, in the GLM

(Figure 3b). Here, t = 100 ms if assuming the frequency is 10 Hz. Applying this method to the real

MEG data during rest, we see much diminished 10 Hz oscillation in sequence detection during rest

(Liu et al., 2019).

Spatial correlations
As mentioned above, correlations between decoded variables commonly occur. The simplest type

of decoding model is a binary classifier that maps brain activity to one of two states. These states

will, by definition, be perfectly anti-correlated. Conversely, if separate classifiers are trained to distin-

guish each state’s representation from baseline (‘null’) brain data, then the states will often be posi-

tively correlated with each other.

Unfortunately, positive or negative correlations between states reduce the sensitivity of sequence

detection because it is difficult to distinguish between states within the sequence: collinearity impairs

estimation of b in Equation 2. In Figure 3c, we show in simulation that the ability to detect real

sequences goes down as the absolute value of a spatial correlation goes up. We took the absolute

value here because the direction of correlation is not important, only the magnitude of the correla-

tion matters.

Ideally, the state decoding models should be as independent as possible. We have suggested

the approach of training models to discriminate one state against a mixture of other states and null

data (Liu et al., 2019; Kurth-Nelson et al., 2016). This mixture ratio can be adjusted. Adding more

null data causes the states to be positively correlated with each other, while less null data leads to

negative correlation. We adjust the ratio to bring the correlation between states as close to zero as

possible. In Figure 3d, we show in simulation the ensuing benefit for sequence detection. An alter-

native method is penalizing covariance between states in the classifier’s cost function

(Weinberger et al., 1988).

Regularization
A key parameter in training high-dimensional decoding models is the degree of regularization. In

sequence analysis, we are often interested in spontaneous reactivation of state representations, as in

replay. However, our decoding models are typically trained on task-evoked data because this is the

only time at which we know the ground truth of what is being represented. This poses a challenge

insofar as the models best suited for decoding evoked activity at training may not be well suited for

decoding spontaneous activity at subsequent tests. Regularizing the classifier (e.g. with an L1 norm)

is a common technique for increasing out-of-sample generalization (to avoid overfitting). Here, it has

the added potential benefit of reducing spatial correlation between classifier weights.

During classifier training, we can impose L1 or L2 constraints over the inference of classifier coeffi-

cients, W : This amounts to finding the coefficients, W, that maximize the likelihood of the data

observations under the constraint imposed by the regularization term. L1 regularization can be

phrased as maximizing the likelihood, subject to a regularization penalty on the L1 norm of the coef-

ficient vector:

W¼
W

argmax log P YjM;Wð Þð ÞþblL1jjWjj
1

½ � (10)

L2 regression can be viewed as a problem of maximizing the likelihood, subject to a regularization

penalty on the L2 norm of the coefficient vector:

W¼
W

argmax log P YjM;Wð Þð ÞþblL2jjWjj
2

½ � (11)

where M is the task data, with dimension of number of observations, b, by number of sensors, s. Y is

the label of observations, a vector with dimension of b by 1. P YjM;Wð Þ ¼ s MWð Þ, and s is the logis-

tic sigmoid function.
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We simulate data with varying numbers of true sequences at 40 ms lag and find that the beta esti-

mate of sequence strength at 40 ms positively relates to the number of sequences. We also find that

L1 weight regularization is able to detect sequences more robustly than L2 regularization, while L2

performs no better than an unregularized model (Figure 3e). The L1 models also have much lower

spatial correlation, consistent with L1 achieving better sequence detection by reducing the covarian-

ces between classifiers.

In addition to minimizing spatial correlations, as discussed above, it can also be shown that L1-

induced sparsity encodes weaker assumptions about background noise distributions into the classi-

fiers as compared to L2 regularization (Higgins, 2019). This might be of special interest to research-

ers who want to measure replay during sleep. Here, the use of sparse classifiers is helpful as

background noise distributions are likely to differ more substantially from the (awake state) training

data.

Statistical inference
So far, we have shown how to quantify sequences in representational dynamics. An essential final

step is assessing the statistical reliability of these quantities.

All the tests described in this section evaluate the consistency of sequences across subjects. This

is important because even in the absence of any real sequences of task-related representations

spontaneous neural activity is not random but follows repeating dynamical motifs (Vidaurre et al.,

2017). Solving this problem requires a randomized mapping between the assignment of physical

stimuli to task states. This can be done across subjects, permitting valid inference at the group level.

At the group level, the statistical testing problem can be complicated by the fact that sequence

measures do not in general follow a known distribution. Additionally, if a state-to-state lag of inter-

est (Dt) is not known a priori, it is then necessary to perform tests at multiple lags, creating a multiple

comparisons problem over a set of tests with complex interdependencies. In this section, we discuss

inference with these issues in mind.

Distribution of sequenceness at a single lag
If a state-to-state lag of interest (Dt) is known a priori, then the simplest approach is to compare the

sequenceness against zero, for example, using either a signed-rank test or one-sample t test (assum-

ing Gaussian distribution). Such testing assumes the data are centred on zero if there were no real

sequences. We show this approach is safe in both simulation (assuming no real sequences) and real

MEG data where we know there are no sequences.

In simulation, we assume no real sequences, but state time courses are autocorrelated. At this

point, there is no systematic structure in the correlation between the neuronal representations of dif-

ferent states (see later for this consideration). We then simply select the 40 ms time lag and compare

its sequenceness to zero using either a signed-rank test or one-sample t test. We compare false-pos-

itive rates predicted by the statistical tests with false-positive rates measured in simulation

(Figure 4a). We see the empirical false positives are well predicted by theory.

We have tested this also on real MEG data. In Liu et al., 2019, we had one condition where we

measured resting activity before the subjects saw any stimuli. Therefore, by definition these sensory

stimuli could not be replayed, we can use classifiers from these stimuli (measured later) to test a

false-positive performance of statistical tests on replay. Note, in our case, that each subject saw the

same stimuli in a different order. They could not know the correct stimulus order when these resting

data were acquired. These data provide a valid null for testing false positives.

To obtain many examples, we randomly permute the eight different stimuli 10,000 times and

then compare sequenceness (at 40 ms time lag) to zero using either a signed-rank test or one-sam-

ple t test across subjects. Again, predicted and measured false-positive rates match well (Figure 4b,

left panel). This holds true across all computed time lags (Figure 4b, right panel).

An alternative to making assumptions about the form of the null distribution is to compute an

empirical null distribution by permutation. Given that we are interested in the sequence of states

over time, one could imagine permuting either state identity or time. However, permuting time uni-

formly will typically lead to a very high incidence of false positives as time is not exchangeable under

the null hypothesis (Figure 4c, blue colour). Permuting time destroys the temporal smoothness of

neural data, creating an artificially narrow null distribution (Liu et al., 2019; Kurth-Nelson et al.,
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2016). This false positive also exists if we circular shift the time dimension of each state. This is

because the signal is highly non-stationary. Replays come in bursts, as recently analysed

(Higgins et al., 2021), and this will break a circular shift (Harris, 2020). State permutation, on the

other hand, only assumes that state identities are exchangeable under the null hypothesis, while pre-

serving the temporal dynamics of the neural data represents a safer statistical test that is well within

5% false-positive rate (Figure 4c, purple colour).

Correcting for multiple comparisons
If the state-to-state lag of interest is not known, we have to search over a range of time lags. As a

result, we then have a multiple comparison problem. Unfortunately, we do not as yet have a good

parametric method to control for multiple testing over a distribution. It is possible that one could

use methods that exploit the properties of Gaussian random fields, as is common in fMRI
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ms time lag, across 24 simulated subjects. There are 10,000 simulations. (b) We have also tested the sequenceness distribution on real MEG data.

Illustrated is the pre-task resting state on 22 subjects from Liu et al., where the ground truth is the absence of sequences given the stimuli have not yet

been shown. The statistics are done on sequenceness at 40 ms time lag, across the 22 subjects. There are eight states. The state identity is randomly

shuffled 10,000 times to construct a null distribution. (c) Time-based permutation test tends to result in high false positive, while state identity-based

permutation does not. This is done in simulation assuming no real sequences (n = 1000). (d) P-P plot of state identity-based permutation test over peak
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within a permutation, and the permutation threshold is defined as the 95% percentile over permutations. In simulation, we only compared the max

sequence strength in the data to this permutation threshold. There are 10,000 simulations. In each simulation, there are 24 simulated subjects, with no
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(Worsley et al., 1996), but we have not evaluated this approach. Alternatively, we could use Bonfer-

roni correction, but the assumption that each computed time lag is independent is likely false and

overly conservative.

We recommend relying on state identity-based permutation. To control for the family-wise error

rate (assuming a ¼ 0:05), we want to ensure there is a 5% probability of getting the tested sequence-

ness strength (Stest) or bigger by chance in *any* of the multiple tests. We therefore need to know

what fraction of the permutations gives Stest or bigger in any of their multiple tests. If any of the

sequenceness scores in each permutation exceed Stest, then the maximum sequenceness score in the

permutation will exceed Stest, so it is sufficient to test against the maximum sequenceness score in

the permutation. The null distribution is therefore formed by first taking the peak of sequenceness

across all computed time lags of each permutation. This is the same approach as used for family-

wise error correction for permutations tests in fMRI data (Nichols, 2012), and in our case it is shown

to behave well statistically (Figure 4d).

What to permute
We can choose which permutations to include in the null distribution. For example, consider a task

with two sequences, Seq1:A ! B ! C ! D and Seq2:E ! F ! G ! H. We can form the null distribu-

tion either by permuting all states (e.g. one permutation might be E ! F ! A ! B, H

! C ! E ! D), as implemented in Kurth-Nelson et al., 2016. Alternatively, we can form a null dis-

tribution which only includes transitions between states in different sequences (e.g. one permutation

might be D ! G ! A ! E, H ! C ! F ! B), as implemented in Liu et al., 2019. In each case, per-

mutations are equivalent to the test data under the assumption that states are exchangeable

between positions and sequences. The first case has the advantage of many more possible permuta-

tions, and therefore may make more precise inferential statements in the tail. The second case may

be more sensitive in the presence of a signal as the null distribution is guaranteed not to include per-

mutations which share any transitions with the test data (Figure 4e). For example, in Figure 4e, the

blue swaps are the permutations that only exchange state identity across sequences, as in Liu et al.,

2019, while the red swaps are the permutations that permit all possible state identity permutations,

as in Kurth-Nelson et al., 2016. Note that there are many more different state permutations in red

swaps than in blue swaps. We can make different levels of inferences by controlling the range of the

null distributions in the state permutation tests.

Cautionary note on exchangeability of states after training
Until now, all non-parametric tests have assumed that state identity is exchangeable under the null

hypothesis. Under this assumption, it is safe to perform state identity-based permutation tests on ZF

and ZB. In this section, we consider a situation where this assumption is broken.

More specifically, take a situation where the neural representation of states A and B is related in a

systematic way or, in other words, the classifier on state A is confused with state B, and we are test-

ing sequenceness of A ! B. Crucially, to break the exchangeability assumption, representations of A

and B have to be systematically more related than other states, for example, A and D. This cannot

be caused by low-level factors (e.g. visual similarity) because states are counterbalanced across sub-

jects, so any such bias would cancel at the population level. However, such a bias might be induced

by task training.

In this situation, it is, in principle, possible to detect sequenceness of A ! B even in the absence

of real sequences. In the autocorrelation section above, we introduced protections against the inter-

action of state correlation with autocorrelation. These protections may fail in the current case as we

cannot use other states as controls (as we do in the multiple linear regression) because A has system-

atic relationship with B, but not other states. State permutation will not protect us from this problem

because state identity is no longer exchangeable.

Is this a substantive problem? After extensive training, behavioural pairing of stimuli can indeed

result in increased neuronal similarity (Messinger et al., 2001; Sakai and Miyashita, 1991). These

early papers involved long training in monkeys. More recent studies have shown induced representa-

tional overlap in human imaging within a single day (Kurth-Nelson et al., 2015; Barron et al., 2013;

Wimmer and Shohamy, 2012). However, when analysed across the whole brain, such
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representational changes tend to be localized to discrete brain regions (Schapiro et al., 2013;

Garvert et al., 2017), and as a consequence may have limited impact on whole-brain decodeability.

Whilst we have not yet found a simulation regime in which false positives are found (as opposed

to false negatives), there exists a danger in cases where, by experimental design, the states are not

exchangeable.

Source localization
Uncovering temporal structure of neural representation is important, but it is also of interest to ask

where in the brain a sequence is generated. Rodent electrophysiology research focuses mainly on

the hippocampus when searching for replay. One advantage of whole-brain non-invasive neuroimag-

ing over electrophysiology (despite many known disadvantages, including poor anatomical precision,

low signal-noise ratio) is in its ability to examine neural activity in multiple other brain regions. Ide-

ally, we would like a method that is capable of localizing sequences of more abstract representation

in brain regions beyond hippocampus (Liu et al., 2019).

We want to identify the time when a given sequence is very likely to unfold, so we can construct

averages of independent data over these times. We achieve this by transforming from the space of

original states, Xorig, to the space of sequence events, Xseq. First, based on the transition of interest,

T, we can obtain the projection matrix, Xproj:

Xproj ¼ Xorig �T (12)

If we know the state lag within sequence, Dt (e.g. the time lag give rise to the strongest

sequenceness), or have it a priori, we can obtain the time-lagged matrix, Xlag:

Xlag ¼ Xorig t�Dtð Þ (13)

Then, we obtain state space with sequence event as states by element-wise multiply Xproj and

Xlag:

Xseq ¼ Xlag: �Xproj (14)

Each element in Xseq indicates the strength of a (pairwise) sequence at a given moment in time. At

this stage, Xseq is a matrix with number of time points as rows (same as Xorig), and with number of

pairwise sequences (e.g. A->B; B->C; etc.) as columns. Now on this matrix, Xseq, we can either look

for sequences of sequences (see Appendix 3), or sum over columns (i.e. average over pairwise

sequence events), and obtain a score at each time point reflecting how likely it is to be a sequence

member (Figure 5a).

We can use this score to construct averages of other variables that might co-vary with replay. For

example, if we choose time points when this score is high (e.g. 95th percentile) after being low for

the previous 100 ms and construct an average time-frequency plot of the raw MEG data aligned to

these times, we can reconstruct a time-frequency plot that is, on average, associated with replay

onset (Figure 5b). Note that although this method assigns a score for individual replay events as an

intermediary variable, it results in an average measure across many events.

This approach is similar to spike-triggered averaging (Sirota et al., 2008; Buzsáki et al., 1983).

Applying this to real MEG data during rest, we can detect increased hippocampal power at 120–150

Hz, at replay onset (Figure 5b, c). Source reconstruction in the current analysis was performed using

linearly constrained minimum variance (LCMV) beamforming, a common method for MEG source

localization. This is known to suffer from distal correlated sources (Hincapié et al., 2017). A better

method may be Empirical Bayesian Beamfomer for accommodating correlated neural source as a pri-

ori (O’Neill, 2021).

TDLM for rodent replay
So far, we have introduced TDLM in the context of analysing human MEG data. Relatedly, its appli-

cation on human EEG data was also explored (Appendix 4: Apply TDLM to human whole-brain EEG

data). Historically, replay-like phenomena have been predominantly studied in rodents with electro-

physiology recordings in the hippocampal formation (Davidson et al., 2009; Grosmark and Buz-

sáki, 2016; Tingley and Peyrache, 2020). This raises interesting questions: how does TDLM
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compare to the existing rodent replay methods, can TDLM be applied to spiking data for detecting

rodent replays, and what are the pros and cons? In this section, we address these questions.

Generality of graph- vs. line-based replay methods
Given that TDLM works on the decoded state space, rather than sensor (with analogy to cell) level,

we compared TDLM to rodent methods that work on the posterior decoded position (i.e., state)

space, normally referred to as Bayesian-based methods (Tingley and Peyrache, 2020). (Note that

these methods are typically Bayesian in how position is decoded from spikes [Zhang et al., 1998]

but not in how replay is measured from decoded position.) Two commonly used methods are Radon

transform (Davidson et al., 2009) and linear weighted correlation (Grosmark and Buzsáki, 2016).

Both methods proceed by forming a 2D matrix, where one dimension is the decoded state (e.g.

positions on a linear track), and the other dimension is time (note that the decoded state is embed-

ded in 1D). The methods then try to discover if an ordered line is a good description of the relation-

ship between state and (parametric) time. For this reason, we call this family of approaches ‘line

search’.

The radon method uses a discrete Radon transform to find the best line in the 2D matrix

(Toft, 1996) and then evaluates the radon integral, which will be high if the data lie on a line

(Figure 6a). It compares this to permutations of the same data where the states are reordered

(Tingley and Peyrache, 2020). The linear weighted correlation method computes the average corre-

lation between the time and estimated position in the 1D embedding (Figure 6b). The correlation is

non-zero provided there is an orderly reactivation along the state dimension.

Both methods are applied to decoded positions, where they are sorted based on the order in a

linearized state space. TDLM also works on the decoded position space, but instead of directly mea-

suring the relationship between position and time, it measures the transition strength for each possi-

ble state to state transitions (Figure 6c).

This is a key difference between TDLM and these popular existing techniques. To reiterate, the

latter rely on a continuous parametric embedding of behavioural states and time. TDLM is funda-

mentally different as it works on a graph and examines the statistical likelihood of some transitions

happening more than others. This is therefore a more general approach that can be used for

sequences drawn from any graph (e.g. 2D maze, Figure 6d), not just graphs with simple embed-

dings (like a linear track). For example, in a non-spatial decision-making task (Kurth-Nelson et al.,

2016), all states lead to two different states and themselves can be arrived at from two other differ-

ent states (Figure 6e). Existing ‘line search’ methods will not work because there is no linear rela-

tionship between time and states (Figure 6f).
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Figure 5. Source localization of replay onset. (a) Temporal delayed linear modelling indexes the onset of a sequence based on the identified optimal

state-to-state time lag (left panel). Sequence onset during resting state from one example subject is shown (right panel). (b) There was a significant

power increase (averaged across all sensors) in the ripple frequency band (120–150 Hz) at the onset of replay compared to the pre-replay baseline (100

to 50 ms before replay). (c) Source localization of ripple-band power at replay onset revealed significant hippocampal activation (peak Montreal

Neurological Institute, i.e., MNI coordinate: X = 18, Y = �12, Z = �27). Panels (b) and (c) are reproduced from Figure 7A, C, Liu et al., 2019, Cell,

published under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0).
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Multi-scale TDLM
While continuous spaces can be analysed in TDLM by simply chunking the space into discrete states,

TDLM in its original form may potentially be less sensitive for such analyses than techniques with

built-in assumptions about the spatial layout of the state space, such as the linear relationship

between time and reactivated states (Appendix 5 ‘Less sensitivity of TDLM to skipping sequences’).

In essence, because TDLM works on a graph, it has no information about the Euclidean nature of the

state space, while techniques that make assumptions about the linear relationship between space

and time benefit from these assumptions. For example, detecting state 1 then state 5 then state 10

counts as replay in these techniques, but not in TDLM.

However, TDLM can be extended to address this problem. For continuous state spaces, we first

need to decide how to best discretize the space. If we choose a large scale, we will miss replays that

occur predominantly within a spatial bin. If we choose a small scale, we will miss transitions that

jump spatial bins. A simple solution is to apply TDLM at multiple different scales and take an (vari-

ance-weighted) average of the sequenceness measures across different scales. For example, when

measuring replay at the same speed, we can average events that travel 5 cm in 10 ms together with

events that travel 10 cm in 20 ms.

Specifically, to perform multi-scale TDLM, we discretize position bins at multiple widths. This gen-

erates rate maps at multiple scales (e.g. 5 cm, 10 cm, 20 cm, 40 cm), and hence a multi-scale state
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space. For each replay speed of interest, we apply TDLM separately at each scale, and then take a

variance-weighted average of replay estimates over all scales.

bM ¼

P

n

i¼1

bi=Vi

P

n

i¼1

1=Vi

(15)

where bi is the sequence strength of given speed (i.e. state-to-state lag) measured at scale i, Vi is

the variance of its bi estimator, and n is the number of scales. In the end, statistical testing is per-

formed on the precision weighted averaged sequence strength, bM , in the same way as we do in the

original TDLM.

It is easy to see why this addresses the potential concerns raised above as some scales will cap-

ture the 1 -> 2 -> 3 transitions, whilst others will capture the 1 -> 10 -> 20 transitions: because the

underlying space is continuous, we can average results of the same replay speed together, and this

will reinstate the Euclidean assumptions.

Applying multi-scale TDLM to real rodent data (place cells in CA1)
We demonstrate the applicability of multi-scale TDLM by analysing CA1 place cell spiking data from

Ólafsdóttir et al., 2016. In Ólafsdóttir et al., 2016, rats ran multiple laps on a 600 cm Z maze and

were then placed in a rest enclosure for 1.5 hr (Figure 7a). The Z maze consists of three tracks, with

its ends and corners baited with sweetened rice to encourage running from one end to the other.

The animal’s running trajectory was linearized, dwell time and spikes were binned into 2 cm bins and

smoothed with a Gaussian kernel (s = 5 bins). We generated rate maps separately for inbound (track

1 -> track 2 -> track 3) and outbound (track 3 -> track 2 -> track 1) running (see details in section

‘Rodent replay dataset’).

As in Ólafsdóttir et al., 2016, cells recorded in CA1 were classified as place cells if their peak fir-

ing field during track running was above 1 Hz with a width of at least 20 cm (see an example in

Figure 7b). The candidate replay events were identified based on multi-unit (MU) activity from place

cells during rest time. Periods exceeding the mean rate by three standard deviations of MU activity

were identified as possible replay events. Events less than 40 ms long, or which included activity

from less than 15% of the recorded place cell ensemble, were rejected (see an example of putative

replay event in Figure 7c), and the remaining events were labelled putative replay events.

We analysed data from one full recording session (track running for generating rate map, post-

running resting for replay detection) from Rat 2192 reported in Ólafsdóttir et al., 2016. Following

the procedure described above, we identified 58 place cells and 1183 putative replay events. Replay

analysis was then performed on the putative replay events, separately for inbound and outbound

rate maps given the same position has a different decoded state depending on whether it was dur-

ing an outbound or inbound run.

A forward sequence is characterized by states from the outbound map occurring in the outbound

order or states from the inbound map occurring in the inbound order. Conversely, a backward

sequence is when states from the inbound map occur in the outbound order or states from the out-

bound map occur in the inbound order. Candidate events were decoded based on a rate map,

transforming the ncells * ntime to nstates * ntime. Each entry in this state space represents the pos-

terior probability of being in this position at a given time. Replay analysis was performed solely on

this decoded state space.

Note that TDLM is applied directly to the concatenated rather than individual replay events. This

is because TDLM is a linear modelling framework. Applying TDLM on each single replay event and

then averaging the beta estimates (appropriately weighted by the variances) is equivalent to running

TDLM once on the concatenated replay events. It quantifies the average amount of replay across

many events, which is different compared to existing replay methods that focus on single replay

events. Because TDLM addresses statistical questions in linear modelling, it does not require second-

ary statistics to ask whether the ‘counts’ of individual events are more likely than chance or more

likely in one situation than another.

During the whole sleep period, TDLM identified a significant forward sequence for the outbound

map with a wide speed range around from 1 to 10 m/s (Figure 7d, left panel), consistent with recent
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findings from Denovellis, 2020 on varying replay speed (similar results were obtained for inbound

map, not shown here for simplicity). In our analysis, the fastest speed is up to 10 m/s, which is

around 20� faster than its free running speed, representing approximately half a track-arm in a typi-

cal replay event, consistent with previous work (Lee and Wilson, 2002; Davidson et al., 2009;

Karlsson and Frank, 2009; Nádasdy et al., 1999).

Second-order inferences
As pointed out by van der Meer et al., 2020, there are two types of statistical questions: a ‘first-

order’ sequence question, which concerns whether an observed sequenceness is different from ran-

dom (i.e. do replays exist?); and a ‘second-order’ question, which requires a comparison of

sequenceness across conditions (i.e. do replays differ?). Because it is embedded in a linear regres-

sion framework, TDLM is ideally placed to address such questions. There are two ways of asking

such questions in linear modelling: contrasts and interactions. We explain them with examples here.
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Figure 7. Temporal delayed linear modelling (TDLM) applied to real rodent data. (a) The experimental design of Ólafsdóttir et al., 2016. Rats ran on Z

maze for 30 min, followed by 90 min rest. (b) An example rate map for a place cell. The left panel shows its spatial distribution on the Z maze, and the

right panel is its linearized distribution. (c) An example of a candidate replay event (spiking data). (d) Sequence strength as a function of replay speed is

shown for the outbound rate map. Black dotted line is the permutation threshold after controlling for multiple comparisons. Left panel: forward

sequence (red) and backward sequence (blue). The red dotted line indicates the fastest replay speed that is significant – 10 m/s. Right panel: forward–

backward sequence. The pink dotted line indicates the multiple comparison-corrected permutation threshold for the replay difference. The green line is

the sum of sequence strength between forward and backward direction. The solid line (with green shading) indicates the significant replay speeds

(0.88–10 m/s) after controlling for multiple comparisons. We use this as a region of interest (ROI) to test for time-varying effect on replay in (f). (e)

Illustration of two exemplar regressors in the design matrix for assessing time effect on replay strength. The ‘reactivation’ regressor is a lagged copy of

reactivation strength of given position and is used to obtain sequence effect. The ‘reactivation � time’ regressor is the element-wise multiplication

between this position reactivation and time (z-scored); it explicitly models the effect of time on sequence strength. Both regressors are demeaned. (f)

Beta estimate of the sequence effect (left panel), as well as time modulation effect on sequence (right panel) in the ROI, is shown. Negative value

indicates replay strength decreases over time, while positive value means replay increases as a function of sleep time. The statistical inference is done

based on a permutation test. The two black dotted lines in each panel indicate the 2.5th and 97.5th percentile of the permutation samples,

respectively. The red solid line indicates the true beta estimate of the effect. Note that there is a selection bias in performing statistical inference on

forward and backward sequence strength (red rectangle) within this ROI, given the sum of forward and backward sequence is correlated with either

forward or backward sequence alone. There is no selection bias in performing statistics on the difference of sequence effects or effects relating to time

(green rectangle).
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Linear contrasts
After fitting a regression model, resulting in coefficients for different regressors, we can test hypoth-

eses about these coefficients by constructing linear combinations of the coefficients that would be

zero under the null hypothesis. For example, if we want to test whether effect A is greater than

effect B, then we can compute the linear contrast A – B (which would be zero under the null hypoth-

esis) and perform statistics on this new measure. If we want to test whether replay increases linearly

over five conditions [A, B, C, D, E], we can compute the linear contrast �2*A – B + 0*C + D + 2*E

(which would be zero under the null hypothesis) and perform statistics on this new measure. Statis-

tics (within or across animals) can operate with these contrasts in exactly the same way as with the

original coefficients from the linear model. Here, we demonstrate this by showing in our example

dataset that there was a greater preponderance for forward than backward replay. We construct the

contrast (forwards – backwards) and test it against zero using a multiple-comparison-controlled per-

mutation test (Figure 7d, right panel, pink line). By constructing a different contrast (forwards +

backwards), we can also show that the total replay strength across both types of replays was signifi-

cant (Figure 7d, right panel, green line).

Interactions
A second method for performing second-order tests is to introduce them into the linear regression

as interaction terms, and then perform inference on the regression weights for these interactions.

This means changing Equation 2 to include new regressors. For example, if interested in how reacti-

vations change over time, one could build new regressors (Xtimek tð Þ), obtained by element-wise mul-

tiplying the state regressor, e.g. Xk tð Þ with time indices (Xtimek tð Þ ¼ Xk tð Þ:�time). Now the first-level

GLM is constructed as (omitting residual term e, same as Equation 2):

Xj tþDtð Þ ¼
X

n

k¼1

Xk tð Þbkj þXtimek tð Þbtkj (16)

Example regressors in the design matrix can be seen in Figure 7e. The first regressor, Xk tð Þ, is

one of the state reactivation regressors used in standard TDLM. The second regressor, Xtimek tð Þ, is

the same as Xk tð Þ multiplied by time. (There are k regressors of each form in regressor matrix.) Here,

we chose to demean the time regressor before the interaction, so the early half of the regressor is

negative and the late half is positive. This has no effect on the regression coefficients of the interac-

tion term, but, by rendering the interaction approximately orthogonal to Xk tð Þ, it makes it possible

to estimate the main effect and the interaction in the same regression.

Note that the interaction regressor is orthogonal to the state reactivation regressor, so it will

have no effect on the first-order regression terms. If we include such regressors for all states, then

we can get two measures for each replay direction (sequence effect and time effect). The first tells

us the average amount of replay throughout the sleep period (first order). The second tells us

whether replay increases or decreases as time progresses through the sleep period (second order).

Orthogonal tests in regions of interest
When examining forward–backward replay above, we did separate inference for each replay speed,

and then performed multiple comparison testing using the max-permutation method (see

section ’Statistical inference’). We now take the opportunity to introduce another method common

in human literature.

To avoid such multiple comparison correction, it is possible to select a ‘region of interest’ (ROI),

average the measure in question over that ROI, and perform inference on this average measure.

Because we are now only testing one measure, there is no multiple comparison problem. Critical in

this endeavour, however, is that we do not use the measure under test or anything that correlates

with that measure as a means to define the ROI. This will induce a selection bias

(Kriegeskorte et al., 2009). In the example in Figure 7f, we have used the average replay

(forwards + backwards) to select the ROI. We are interested in speeds in which there is detectable

replay on average across both directions and the whole sleep period (Figure 7d, right panel, green

shaded area). If we select our ROI in this way, we cannot perform unbiased inference on first-order

forward or backward replay because forward and backward regressors correlate with their sum

(Figure 7f, statistical inference in the red rectangle is biased). However, we can perform unbiased

Liu et al. eLife 2021;10:e66917. DOI: https://doi.org/10.7554/eLife.66917 19 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.66917


inference on several second-order effects (Figure 7f, statistical inference in the green rectangle). We

can test (forwards – backwards) assuming the difference of terms is orthogonal to their sum (as it is

in this case). Further, we can test any interaction with time because the ROI is defined on the aver-

age over time and the interaction looks for differences as a function of time. When we perform these

tests in our example dataset (Figure 7f, green rectangle), we confirm that there are more forward

than backward replay on average. We further show that forward replay is decreasing with time dur-

ing sleep, and that backward replay is increasing with time. Their difference (forwards – backwards)

is also significant.

In addition to the time-varying effect, we can also test the spatial modulation effect, that is, how

replay strength (at the same replay speed) changes as a function of its spatial content. For example,

is replay stronger for transitions in the start of track compared to the end of the track? As an illustra-

tive example, we have used the same ROI defined above and test the spatial modulation effect on

forward replay. Note that this test of spatial modulation effect is also unbiased from the overall

strength of forward replay, and thereby no selection bias in this ROI, as well.

For visualization purposes, we have first plotted the estimated strength for each pairwise forward

sequence (Figure 8a), separately within each scale (from 1 to 4, with increasing spatial scales). The

pairwise sequences are ordered from the start of the track to the end of the track. Alongside the

pairwise sequence plot, we have plotted the mean replay strength over all possible pairwise transi-

tions (in red) in comparison to the mean of all control transitions (in grey; as expected, they are all

around 0). Note that we cannot perform inference on the difference between the red and grey bars

here because they have been selected from a biased ROI. It is simply for illustration purposes. We

have therefore put them in red squares to match Figure 7f.
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Figure 8. Pairwise sequence and spatial modulation effect. (a) Within each scale, strengths of each pairwise forward sequences in the region of interest

(ROI) (significant replay speeds, compare with Figure 7d, green shading) are ordered from the start of maze to the end of the maze; alongside that, the

mean sequence strength across all of these valid pairwise transitions is plotted (red) in comparison to the mean of all control transitions (grey). This is

for visualization purpose only and is included in the red rectangle. (b) The contrast defining a linear change in forward sequenceness across the track

(spatial modulation) is shown (red line), both separately for each scale, and average across scales, and compared to permutations. On average, forward

replay is stronger at the beginning of the track. (c) Same as panel (b), but this is for the backward sequences. Unlike forward replay, backward replay is

stronger at the end of the track. Note that both panels (b) and (c) are about spatial modulation effect, which is orthogonal to overall sequence strength,

allowing valid inference. They are therefore included in green boxes. (d) The difference of this spatial modulation effect between forward and backward

sequence is also significant. The black dotted lines indicate the 2.5th and 97.5th percentile of the permutation samples. The red solid line indicates the

estimate of the true contrast effect.
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To formally test the spatial modulation effect, we can use the exact same approach as outlined

above in section ’Linear contrasts’. Here, we test a linear increase or decrease across different transi-

tions. We take the linear contrast weight vector, c ([-2,-1,0,1,2] for the largest scale, [-3:3] for the

next scale, [-5:5] for the next scale, and [-12:12] for the smallest scale), and multiply these by the

beta estimates of the transitions:

contrast¼ cTb (17)

If this new measure, contrast, is different from zero, then there is a linear increase/decrease from

one end of the track to the other. Note that this new contrast is no longer biased by the ROI selec-

tion as each transition contributed equally to the ROI selection, but we are now comparing between

transitions. Inference on this contrast is therefore valid. We have therefore put them in green boxes

to match Figure 7f (Figure 8b, c).

Within the larger two scales, these contrasts are significantly negative (tested against permuta-

tions in exactly the same way as the ‘mean’ contrasts). Since we are still in the linear domain, we can

now just average these contrasts across the four scales and get a single measure for spatial modula-

tion of replay. This average measure is significantly negative (Figure 8b). Hence, on average, for-

ward replay is stronger at the beginning of the track.

We can do the same thing for backward replay. We found an opposite pattern, that is, strength

of backward replay is stronger at the end of the track, and similarly, it is not significant in the small-

est scale and becomes significant in the largest scale, and also significant on average across all scales

(Figure 8c). Again, since we are in the linear domain, we can further contrast these contrasts, asking

if this effect is different for forward and backward replay. We found that the difference is indeed sig-

nificant (Figure 8d). This set of results is consistent with previous rodent literature (Diba and Buz-

sáki, 2007). Note that we would like to stress again that this analysis is not about a single replay

event but is testing for average differences across all replay events.

Notably, extra care needs to be exercised for second-order questions (compared to first-order

ones). Problems can emerge due to biases in second-order inference, such as in behavioural sam-

pling (e.g. track 1 may be experienced more than track 2 during navigation; this creates a bias when

evaluating replay in tack 1 vs. track 2 during rest). Such issues are real but can be finessed by experi-

mental design considerations of a sort commonly applied in the human literature. For example:

1. Ensure that biases that might occur within subjects will not occur consistently in the same
direction across subjects (e.g. by randomizing stimuli across participants).

2. Compare across conditions in each subject.
3. Perform a random effects inference across the population by comparing against the between-

subject variance.

Such approaches are not yet common in rodent electrophysiology and may not be practical in

some instances. In such cases, it remains important to be vigilant to guard against these biases with

TDLM as with other techniques. If these approaches are feasible, the machinery for computing sec-

ond-order inferences is straightforward in a linear framework like TDLM.

Generality of TDLM
We have now discussed the applicability of TDLM in relation to human MEG, as well as in rodent

electrophysiology (with comparisons to standard replay detection methods). A preliminary attempt

at detecting replay in human EEG is also shown in Appendix 4. We believe that this establishes

TDLM as a domain-general sequence analysis method: TDLM works at the level of decoded state

space, rather than the sensor/cell level of the data. It can be applied to a wide range of data types

and settings in both humans and rodents, stimulating cross-fertilization across disciplines. It is based

on the GLM framework, and this lends it flexibility for regressing out potential confounds while offer-

ing an intuitive understanding of the overall approach.

In this section, we discuss the generality of TDLM.

States
TDLM assesses the statistical likelihood of certain transitions on a graph. In its original form, TDLM

works on discrete states (i.e. nodes in the graph). Continuous spaces can be incorporated by
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chunking them into discrete spaces. Furthermore, by averaging the same replay speeds measured at

multiple scales of discretization (see section ‘TDLM for rodent replay’), the statistical benefits of an

assumption of a Euclidean geometry can be recovered.

Time length
The longer the time length, the more accurate the estimates in TDLM. This is because TDLM

assesses sequence evidence based on a GLM framework, where time length is the sample size.

Higher sample size will lead to more accurate estimates. In the case of rodent analysis, we recom-

mend applying TDLM to aggregated replay events rather than to a single event because this results

in (1) more time samples for estimation and (2) more activated states in the analysis time framework.

Unlike other techniques which search for a single replay in a single event, this aggregation can be

implemented without losing generality as TDLM is able to handle multiple sequences in the same

data with respect to different directions, contents, or speeds. Furthermore, by aggregating linearly

across all replay events of the same condition, it provides a natural measure for comparing replay

strength, speed, and direction across different experimental conditions.

TDLM has already proved important in human experiments where complex state spaces have

been used (Wimmer et al., 2020; Liu et al., 2019; Liu et al., 2021a; Kurth-Nelson et al., 2016).

We expect this generality will also be important as rodent replay experiments move beyond 1D

tracks, for example, to foraging in 2D, or in complex mazes.

Discussion
TDLM is a domain-general analysis framework for capturing sequence regularity of neural represen-

tations. It is developed on human neuroimaging data and can be extended to other data sources,

including rodent electrophysiology recordings. It offers hope for cross-species investigations on

replay (or neural sequences in general) and potentially enable studies of complex tasks in both

humans and animals.

TDLM adds a new analysis toolkit to the replay field. It is especially suited for summarizing replay

strength across many events, comparing replay strength between conditions, and analysing replay

strength in complex behavioural paradigms. Its linear modelling nature makes it amenable to stan-

dard statistical tests and thereby allows wide use across tasks, modalities, and species. Unlike alter-

native tools, we have not shown TDLM applied to individual replay events.

The temporal dynamics of neural states have been studied previously with MEG (Vidaurre et al.,

2017; Baker et al., 2014). Normally such states are defined by common physiological features (e.g.

frequency, functional connectivity) during rest and termed resting state networks (e.g. default mode

network [Raichle et al., 2001]). However, these approaches remain agnostic about the content of

neural activity. The ability to study the temporal dynamics of representational content permits richer

investigations into cognitive processes (Higgins et al., 2021) as neural states can be analysed in the

context of their roles with respect to a range of cognitive tasks.

Reactivation of neural representations has also been studied previously (Tambini and Davachi,

2019) using approaches similar to the decoding step of TDLM or multivariate pattern analysis

(MVPA) (Norman et al., 2006). This has proven fruitful in revealing mnemonic functions

(Wimmer and Shohamy, 2012), understanding sleep (Lewis and Durrant, 2011), and decision-mak-

ing (Schuck et al., 2016). However, classification alone does not reveal the rich temporal structures

of reactivation dynamics. We have described the application of TDLM mostly during off-task state in

this paper. The very same analysis can be applied to on-task data to test for cued sequential reacti-

vation (Wimmer et al., 2020) or sequential decision-making (Eldar et al., 2020). For example, the

ability to detect sequences on-task allows us to tease apart clustered from sequential reactivation,

where this may be important for dissociating decision strategies (Eldar et al., 2018) and their indi-

vidual differences (Wimmer et al., 2020; Eldar et al., 2020). TDLM, therefore, may allow testing of

neural predictions from process models such as reinforcement learning during task performance

(Dayan and Daw, 2008), which have proved hard to probe previously (Wimmer et al., 2020;

Nour et al., 2021; Liu et al., 2019; Liu et al., 2021a).

In the human neuroimaging domain, we have mainly discussed the application of TDLM with

respect to MEG data. In Appendix 4, we show that TDLM also works well with EEG data. This is not

surprising given EEG and MEG are effectively measuring the same neural signature, namely local
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field potential (or associated magnetic field) on the scalp. We do not have suitable fMRI data to test

TDLM. However, related work has suggested that it might be possible to measure sequential reacti-

vation using fMRI (Schuck and Niv, 2019), but particular methodological caveats need to be consid-

ered (e.g. a bias from last events due to slow haemodynamic response) (Wittkuhn and Schuck,

2021). We believe that TDLM can deal with this, given it models out non-specific transitions,

although further work is needed. In future, we consider it will be useful to combine the high tempo-

ral resolution available in MEG/EEG and the spatial precision available in fMRI to probe region-spe-

cific sequential computations.

In the rodent electrophysiology domain, we show what TDLM (its multi-scale version) has to offer

uniquely compared to existing rodent replay methods. Most importantly, TDLM works on an arbi-

trary graph and its generality makes replay studies in complex mazes possible. Its linear framework

makes the assessment of time-varying effect on replay (Figure 7) or other second-order sequence

questions straightforward. In future work, a promising direction will be to further separate process

noise (e.g. intrinsic variability within sequences) and measurement noise (e.g. noise in MEG record-

ing). This might be achieved by building latent state-space models as have been explored recently in

rodent community (Maboudi et al., 2018; Denovellis, 2020).

Together, we believe that TDLM opens doors for novel investigations of human cognition, includ-

ing language, sequential planning, and inference in non-spatial cognitive tasks (Eldar et al., 2018;

Kurth-Nelson et al., 2016), as well as complicated tasks in rodents, for example, forging in 2D

mazes. TDLM is particularly suited to test specific neural predictions from process models, such as

reinforcement learning. We hope that TDLM can promote an across-species synthesis between

experimental and theoretical neuroscience and, in so doing, shed novel light on neural computation.

Materials and methods

Simulating MEG data
We simulate the data so as to be akin to human MEG.

Task data for obtaining state patterns
We generate ground truth multivariate patterns (over sensors) of states. We then add random

Gaussian noise on the ground truth state patterns to form the task data. We train a logistic regres-

sion classifier on the task data so as to obtain a decoding model for each of the state patterns. Later

we use this decoding model to transform the resting-state data from sensor space (with dimension

of time by sensors) to the state space (with dimension of time by states).

Rest data for detecting sequences
First, to imitate temporal autocorrelations and spatial correlations commonly seen in human neuro-

imaging data, we generate the rest data using an autoaggressive model with multivariate (over sen-

sors) Gaussian noise and add a dependence among sensors. In some simulations, we also add a

rhythmic oscillation (e.g. 10 Hz).

Second, we inject a sequence of state patterns in the rest data. The sequences follow the ground

truth of state transitions of interest. The state-to-state time lag is assumed to follow a gamma distri-

bution. We vary the number of sequences to be injected in the rest data to control the strength of

sequences.

Lastly, we project the rest data to the decoding model of states obtained from the task data.

TDLM will then work on the decoded state space.

An example of the MATLAB implementation is called ‘Simulate_Replay’ from the Github link:

https://github.com/yunzheliu/TDLM (copy archived at swh:1:rev:

015c0e90a14d3786e071345760b97141700d6c85), Liu, 2021b.

Human replay dataset
Task design
Participants were required to perform a series of tasks with concurrent MEG scanning (see details in

Liu et al., 2019). The functional localizer task was performed before the main task and was used to

train a sensory code for eight distinct objects. Note that the participants were provided with no
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structural information at the time of the localizer. These decoding models, trained on the functional

localizer task, capture a sensory-level neural representation of stimuli (i.e. stimulus code). Following

that, participants were presented with the stimuli and were required to unscramble the ‘visual

sequence’ into a correct order, that is, the ‘unscrambled sequence’ based on a structural template

they had learned the day before. After that, participants were given a rest for 5 min. At the end,

stimuli were presented again in random order, and participants were asked to identify the true

sequence identity and structural position of the stimuli. Data in this session are used to train a struc-

tural code (position and sequence) for the objects.

MEG data acquisition, preprocessing, and source reconstruction
We follow the same procedure that has been reported in Liu et al., 2019. We have copied it here

for references.

’MEG was recorded continuously at 600 samples/s using a whole-head 275-channel axial gradi-

ometer system (CTF Omega, VSM MedTech), while participants sat upright inside the scanner. Par-

ticipants made responses on a button box using four fingers as they found most comfortable. The

data were resampled from 600 to 100 Hz to conserve processing time and improve signal-to-noise

ratio. All data were then high-pass-filtered at 0.5 Hz using a first-order IIR filter to remove slow drift.

After that, the raw MEG data were visually inspected, and excessively noisy segments and sensors

were removed before independent component analysis (ICA). An ICA (FastICA, http://research.ics.

aalto.fi/ica/fastica) was used to decompose the sensor data for each session into 150 temporally

independent components and associated sensor topographies. Artefact components were classified

by combined inspection of the spatial topography, time course, kurtosis of the time course, and fre-

quency spectrum for all components. Eye-blink artefacts exhibited high kurtosis (>20), a repeated

pattern in the time course and consistent spatial topographies. Mains interference had extremely

low kurtosis and a frequency spectrum dominated by 50 Hz line noise. Artefacts were then rejected

by subtracting them out of the data. All subsequent analyses were performed directly on the fil-

tered, cleaned MEG signal, in units of femtotesla.

All source reconstruction was performed in SPM12 and FieldTrip. Forward models were gener-

ated on the basis of a single shell using superposition of basis functions that approximately corre-

sponded to the plane tangential to the MEG sensor array. LCMV beamforming (Van Veen et al.,

1997) was used to reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid

step of 5 mm. The sensor covariance matrix for beamforming was estimated using data in either

broadband power across all frequencies or restricted to ripple frequency (120–150 Hz). The baseline

activity was the mean neural activity averaged over �100 ms to �50 ms relative to sequence onset.

All non-artefactual trials were baseline corrected at source level. We looked at the main effect of the

initialization of sequence. Non-parametric permutation tests were performed on the volume of inter-

est to compute the multiple comparison (whole-brain corrected) p-values of clusters above 10 vox-

els, with the null distribution for this cluster size being computed using permutations (n = 5000

permutations)’.

Rodent replay dataset
Data description
This data is from Ólafsdóttir et al., 2016. We analysed one full recording session (track running for

generating rate map, post-running resting for replay detection) from Rat 2192.

Task description
In Ólafsdóttir et al., 2016, rats ran multiple laps on a Z maze and were then placed in a rest enclo-

sure. The two parallel sections of the Z (190 cm each) were connected by a diagonal section (220

cm). Animals were pretrained to run on the track. At the recording session, rats were placed at one

end of the Z-track. The ends and corners of the track were baited with sweetened rice to encourage

running from one end to the other. In each session, rats completed 20 full laps (30–45 min). Follow-

ing the track session, rats were placed in the rest enclosure for 1.5 hr.
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Preprocessing
Following Ólafsdóttir et al., 2016, when generating rate maps we excluded data from both the

ends and corners because the animals regularly performed non-perambulatory behaviours there.

Periods when running speed was less than 3 cm/s were also excluded. Running trajectories were

then linearized, dwell time and spikes were binned into 2 cm bins and smoothed with a Gaussian

kernel (s = 5 bins). We generated rate maps separately for inbound (track 1 -> track 2 -> track 3)

and outbound (track 3 -> track 2 -> track 1) running.

As in Ólafsdóttir et al., 2016, cells recorded in CA1 were classified as place cells if their peak fir-

ing field during track running was above 1 Hz and at least 20 cm wide. The candidate replay events

were identified based on MU activity from place cells during rest time. Only periods exceeding the

mean rate by three standard deviations of MU activity were identified as putative replay events.

Events less than 40 ms long or which included activity from less than 15% of the recorded place cell

ensemble were rejected.

We analysed data from one full recording session (track running for generating rate map, post-

running resting for replay detection) of Rat 2192 reported in Ólafsdóttir et al., 2016. Following the

procedure described above, we have identified 58 place cells and 1183 putative replay events.

Replay analysis was then performed on the putative replay events, separately for inbound and out-

bound rate maps.

Code availability
Source code of TDLM can be found at https://github.com/yunzheliu/TDLM.

Data availability
Data are also available at https://github.com/yunzheliu/TDLM.
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Appendix 1

Multi-step sequences
TDLM can be used iteratively. One extension of TDLM of particular interest is: multi-step sequences.

It asks about a consistent regularity among multiple states.

So far, we introduced methods for quantifying the extent to which the state-to-state transition

structure in neural data matches a hypothesized task-related transition matrix. An important limita-

tion of these methods is that they are blind to hysteresis in transitions. In other words, they cannot

tell us about multi-step sequences. In this section, we describe a methodological extension to mea-

sure evidence for sequences comprising more than one transition: for example, A ! B ! C.

The key ingredient is controlling for shorter sub-sequences (e.g. A ! B and B ! C) in order to

find evidence unique to a multi-step sequence of interest.

Assuming constant state-to-state time lag, Dt, between A and B, and between B and C. We can

create a new state space AB by shifting B up A ! B, and element-wise multiply it with state A. This

new state AB measures the reactivation strength of A ! B, with time lag Dt. In the same way, we can

create a new state space, BC, AC, etc. Then we can construct the same first-level GLM on the new

state space. For example, if we want to determine the evidence of A ! B ! C at time lag Dt, we can

regress AB onto state time course C at each Dt (Equation 1). But we want to know the unique contri-

bution of AB to C. More specifically, we want to test if the evidence of A ! B ! C is stronger than

X ! B ! C, where X is any other state but not A. Therefore, similar to Equation 2, we need to con-

trol CB, DB, when looking for evidence of AB of C. Applying this method, we show that TDLM suc-

cessfully avoids false positives arising out of strong evidence for shorter length (see simulation

results in Appendix 1—figure 1a, and see results obtained on human neuroimaging data in Appen-

dix 1—figure 1b). This process can be generalized to any number of steps.

TDLM, in its current form, assumes a constant intra-sequence state-to-state time lag. If there is a

variability between state transitions TDLM can still cope, but not very elegantly. Assume there is a

three-state sequence, A ! B ! C, with intra-sequence variance. TDLM will need to test all possible

combinations of state-to-state time lags in A ! B and B ! C. If there are n number of time lag of inter-

est in either of the two transitions, TDLM will then have to test n2 possible time lag combinations. This

is a large search space and one that increases exponentially as a function of the length of a sequence.

We note that this analysis is different from a typical rodent replay analysis which assesses the

overall evidence for a sequence length (Davidson et al., 2009; Grosmark and Buzsáki, 2016).

TDLM asks if there is more evidence for A -> B -> C, above and beyond evidence for B -> C, for

example. If the main question of interest is ‘do we have evidence of A -> B -> C in general’, as nor-

mally is the case in the rodent replay analysis (Davidson et al., 2009; Grosmark and Buzsáki,

2016), we should not control for shorter lengths. Instead, we can simply average the evidence

together, as implemented in Kurth-Nelson et al., 2016.
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Appendix 1—figure 1. Extension to temporal delayed linear modelling (TDLM): multi-step sequen-

ces. (a) TDLM can quantify not only pairwise transition, but also longer length sequences. It does so

by controlling for evidence of shorter length to avoid false positives. (b) Method applied to human

MEG data, incorporating control of both alpha oscillation and co-activation for length-2 and length-

3 sequence length. Dashed line indicates the permutation threshold. This is reproduced from

Figure 3A, C, Liu et al., 2019, Cell, published under the Creative Commons Attribution 4.0

International Public License (CC BY 4.0).
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Appendix 2

Pseudocode of sensory code and abstract code cross-validations

Algorithm 1. Hold-one-out cross-validation to compute classification accuracy.

Here N is the number of trials, D is the number of data dimensions, and P is the number of classes.

Algorithm 1: Hold-one-out cross-validation

Input: Dataset D ¼ Xi;Yif gNi¼1
Xi 2 RD;Yi 2 ZP

2

� �

Output: Cross validated classification accuracy a 2 R:0 � a � 1f g
Randomly partition D into K ¼ N

P
equally sized subsets, D ¼ D1;D2; . . . ;DKf g such that each Di contains a single

random sample from each class y;
for k in K do
Create a training dataset Tk ¼ Di:i 6¼ kf g;
Train a logistic regression classifier bk on Tk ;
Compute classification accuracy ak of bk on Dk ;

end

Compute mean accuracy a ¼ 1

K

P

K

k¼1

ak

Algorithm 2. Test a classifier’s abstraction ability across different datasets with a common structure.

Algorithm 2: Classifier abstraction

Testing abstraction ability of classifiers over different datasets with a common structure.

Input: Dataset D ¼ Xi;Yif gNi¼1
Xi 2 RD;Yi 2 A;B;C;D;A

0
;B

0
;C

0
;D0

� 	� �

Output: Abstraction accuracy a 2 R:0 � a � 1f g
Randomly partitionD into two subsets each of which exclusively contain trials from one or other structure sequence:

D1 ¼ Xi; Yif gNi¼1
:Xi 2 RD; Yi 2 A;B;C;Df g and D2 ¼ Xi;Yif gNi¼1

:Xi 2 RD;Yi 2 A0;B0;C0;D0f g
for k in {1, 2} do
Train a logistic regression classifier bk on Dk ;
Compute classifier predictions pk of bk on D3�k ;
Compute abstraction accuracy ak as proportion of samples for which the prediction pk correctly identifies the

sequence location (e.g., A predicted for A0);
end

Compute mean abstraction accuracy a ¼ 1

2

P

2

k¼1

ak
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Appendix 3

Sequences of sequences
We have detailed the use of either sensory or abstract representations as the states in TDLM. We

now take a step further and use sequences themselves as states. Using this kind of hierarchical analy-

sis, we can search for sequences of sequences. This is useful because it can reveal temporal structure

not only within sequence, but also between sequences. The organization between sequences is of

particular interest for revealing neural computations. For example, the forward and backward search

algorithms hypothesized in planning and inference (Penny et al., 2013) can be cast as sequences of

sequences problem: the temporal structure of forward and backward sequence. This can be tested

by using TDLM iteratively.

To look for sequences between sequences, we need first to define sequences as new states. To

do so, the raw state course, for example, state B, needs to be shifted up by the empirical within-

sequence time lag Dt (determined by the two-level GLM), to align with the onset of state A, if assum-

ing sequence A ! B exist (at time lag Dt). Then, we can element-wise multiply the raw state time

course A with the shifted time course B, resulting in a new state AB. Each entry in this new state

time course indicates the reactivation strength of sequence AB at a given time.

The general two-level GLMs framework still applies, but now with one important caveat. The new

sequence state (e.g. AB) is defined based on the original states (A and B), and where we are now

interested in a reactivation regularity, that is, sequence, between sequences, rather than the original

states. We need therefore to control for the effects of the original states. Effectively, this is like con-

trolling for main effects (e.g. state A and shifted state B) when looking for their interaction (sequence

AB). TDLM achieves this by including time-lagged original state regressors A, B, in addition to AB, in

the first-level GLM sequence analysis.

Specifically, let us assume that the sequence state matrix is Xseq, after transforming the original

state space to sequence space based on the empirical within-sequence time lag Dtw. Each column at

Xseq is sequence state, denoted by Sij, which indicates the strength of sequence i -> j reactivation.

The raw state i is Xi, and the shifted raw state j is Xjw (by time lag Dtw).

In the first level GLM, TDLM ask for the strength of a unique contribution of sequence state Sij to

Smn while controlling for original states (Xi and Xjw). For each sequence state ij, at each possible time

lag Dt, TDLM estimated a separate linear model:

Smn ¼ Xi Dtð Þbi þXjw Dtð Þbjþ Sij Dtð Þbij Dtð Þ (18)

Repeat this process for each sequence state separately at each time lag, resulting in a sequence

matrix bseq.

At the second-level GLM, TDLM asks how strong the evidence for a sequence of interest is com-

pared to sequences that have the same starting state or end state at each time lag. This second-level

GLM will be the same as Equation 5, but with additional regressors to control for sequences that

share the same start or end state. In simulation, we demonstrate, applying this method, that TDLM

can uncover hierarchical temporal structure: state A is temporally leading state B with 40 ms lag,

and the sequence A -> B tends to repeat itself with a 140 ms gap (Appendix 3—figure 1a). One

interesting application of this is to look for theta sequence (Mehta et al., 2002; McNaughton et al.,

2006; Buzsáki and Moser, 2013). One can think of theta sequence, a well-documented phenome-

non during rodent spatial navigation, as a neural sequence repeating itself in theta frequency (6–12

Hz).
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Appendix 3—figure 1. Sequences of sequences. (a) Temporal delayed linear modelling (TDLM) can

also be used iteratively to capture the repeating pattern of a sequence event itself. Illustration in the

top panel describes the ground truth in the simulation. Intra-sequence temporal structure (left) and

inter-sequence temporal structure (right) can be extracted simultaneously. (b) Temporal structure

between and within different sequences. Illustration of two sequence types with different state-to-

state time lag within sequence, and a systematic gap between the two types of sequences on top.

TDLM can capture the temporal structures both within (left and middle panel) and between (right

panel) the two sequence types.

In addition to looking for temporal structure of the same sequence, the method is equally suitable

when searching for temporal relationships between different sequences. For example, assuming two

different types of sequences, one sequence type has a within-sequence time lag at 40 ms; while the

other has a within-sequence time lag at 150 ms (Appendix 3—figure 1b, left and middle panel); and

there is a gap of 200 ms between the two types of sequences (Appendix 3—figure 1b, right panel).

These time lags are set arbitrarily for illustration purposes. TDLM can accurately capture the dynam-

ics both within and between the sequences, supporting a potential for uncovering temporal relation-

ships between sequences under the same framework.
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Appendix 4

Apply TDLM to human whole-brain EEG data
An autocorrelation is commonplace in neuroimaging data, including EEG and fMRI. TDLM is

designed to specifically take care of this confound, and, on this basis, we should be able to work

with EEG and fMRI data. We do not have suitable fMRI data available to test TDLM but are inter-

ested to investigate this in more depth in our future work. We had collected EEG data from one par-

ticipant to test whether TDLM would *just* work.

The task was designed to examine on-task sequential replay in decision-making by Dr. Toby

Wise. This is a ‘T-maze’ like task, where a participant needs to choose a left or right path based on

the value received at the end of the path. We could decode seven objects well on the whole-brain

EEG data using just raw amplitude feature (same with our MEG-based analysis) and could detect

fast backward sequenceness (peaked at 30 ms time lag) during choice/planning time (Appendix 4—

figure 1), similar to our previous MEG findings (Kurth-Nelson et al., 2016). As this result is from

one subject, we are cautious about making an excessive claim, but nevertheless we believe that the

data show the TDLM approach is highly promising for EEG data.
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Appendix 4—figure 1. Sequence detection in EEG data (from one participant). (a) Task design. At

each trial, the participant starts at state A, and he/she needs to select either ‘BDF’ or ‘CEG’ path,

based on the final reward receipt at terminal states F or G. All seven states are indexed by pictures.

(b) The leave-one-out cross-validated decoding accuracy is shown, with a peak at around 200 ms

after stimulus onset, similar to our previous MEG findings. (c) Temporal delayed linear

modelling method is then applied on the decoded state time course where we find a fast backward

sequenceness that conforms to task structure. Shown here is a subtraction between forward and

backward sequenceness, where a negative sequenceness indicates stronger backward sequence

replay. The dotted line is the peak of the absolute state permutation at each time lag, the dashed

line the max over all computed state time lags, thereby controlling for multiple comparisons. This is

the same statistical method used in our previous work and in the current paper. These EEG

sequence results replicate our previous MEG-based findings at planning/decision time (see Figure 3

in Kurth-Nelson et al., 2016 and also see Figure 3f in Liu et al., 2019).
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Appendix 5

Less sensitivity of TDLM to skipping sequences
In a linear track where replays only go in a single direction, it is possible that TDLM is less sensitive

compared to the linear correlation or the Radon method, given the latter assumes a parametric rela-

tionship between space and time. For example, if only the first and last states are activated, but not

the intermediate states, the existing methods will report replay, but TDLM will not, because in exist-

ing methods space and time are parametric quantities (Appendix 5—figure 1). In contrast, TDLM

only knows about transitions on a graph.
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Appendix 5—figure 1. Parametric relationship between space and time vs. graph transitions. (a) A

scheme for skipping sequence (left). Both Radon and linear weighted correlation methods aim to

capture a parametric relationship between space and time. Temporal delayed linear

modelling (TDLM), on the other hand, tries to capture transitions in a graph (shown in right, with the

red indicating the transition of interest). (b) A decoded time by position matrix from simulated

spiking data. (c) Replay analysis using all three methods. TDLM is less sensitive compared to existing

‘line search’ methods, like radon or linear correlation. The red line indicates the true sequence

measure from each of these methods. The bar plots are permutation samples by randomly shuffling

the rate maps.
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